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Physical exercises can benefit our health, but avoiding improper form and overexertion is essential. Facilitating bodily insights can

encourage learning about exercise form, allowing users to gain a deeper understanding of their physiology. To investigate this, we

conducted a lab experiment where amateur users performed bicep curls, and interviews with sports coaches. Participants were

provided with FitBack—a system that monitors muscle activity during exercises via electromyography (EMG) and offers real-time

biofeedback. Amateurs reported that they were successful in improving their exercise form and could acquire deeper bodily insights.

Coaches reflected on how understanding muscle activity through EMG could be effectively used for increasing body awareness during

coaching, highlighting that EMG-based biofeedback is beneficial for a diverse set of users. Our work contributes insights into using

bodily sensing to help users understand their bodies. We contribute guidelines for designing systems that use EMG biofeedback

effectively in physical activity.
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1 INTRODUCTION

Physical activity is an increasingly important part of our lives. The number of people exercising regularly is on the

rise [19, 21], as is the number of interactive systems that accompany exercise every day. However, while regular physical

exercise offers mental and physical health benefits, these come at the price of the hard work needed to master the forms

and techniques required for a given sport. The difficulties in reaching the required body awareness to achieve the desired

proficiency may lead to dissatisfaction and even abandonment, reducing or losing the accrued health benefits [62]

altogether. While coaching experts are widely available, physically active users cannot be constantly accompanied

while exercising. Past research in Human-Computer Interaction (HCI), e.g. [42, 70] showed that interactive technologies
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Fig. 1. A user monitoring their biceps curl exercise via electromyography. Respective feedback is shown on the monitor screen (biceps
on the left, deltoid on the right). Electrode pairs (red/yellow) are attached on the biceps and deltoid. Reference electrodes are marked
in dark blue.

can effectively build body awareness for certain exercise scenarios. Yet, it remains a challenge to develop methods that

would enable generic, exercise-agnostic methods of better understanding one’s body when exercising. Thus, there is a

need for developing ways in which users can monitor their bodies to better understand their sports practice.

While professional sportspeople use a wide array of sensors to improve their performance, e.g. [6], these technologies

are too complex for everyday users. In this paper, we explore the means for users to become more aware of their muscle

activity through electromyography (EMG). EMG offers additional insight into muscle physiology to facilitate motor

memory consolidation. Users desire a better insight into their bodies [15]. Yet, it remains a challenge to understand

how complex physiological data streams, such as EMG, can be effectively used to foster insight.

EMG in current commercial products offers highly customized feedback about muscle strain, exertion, and training

effect, optimizing for individual exercises and performance metrics. In contrast, our work investigates if and how

visualized EMG data can provide insight into one’s own body physiology and how to provide an encouraging—yet

challenging—way for users to access knowledge about their muscles. We believe that current tools undervalue the

potential of EMG as a visualization of exercise form. As muscle activity differs significantly among users, no algorithm

can offer an effective automated interpretation of the signals, which considers the individual context of the exercise.

Our work explores how interactive technology can facilitate this user-driven process of interpretation as an opportunity

for monitoring physical activity, empowering users to understand their bodies better.

Consequently, this paper investigates user attitudes and performance when interacting with muscle activity data. We

first confirmed the technical feasibility of our low-cost, mobile prototype FitBack (see Figure 1) to record and visualize

EMG data and examined first impressions and performance of amateur users when supported via EMG-based biofeedback

while performing bicep curls. Users reported that having access to their muscle activity through visualizations supported

them in gaining an understanding of their own body movements. Amateur users mostly preferred abstract feedback

that did not include rich EMG data during the exercise. Additionally, feedback preferences were primarily related to the
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exercise’s context, such as supervising daily workouts vs. perfecting exercise form. Interestingly, for the latter, users

reported that they preferred detailed feedback.

To further investigate how to design for rich physiological feedback in the context of coaching and supervision

during physical activity, we conducted a set of interviews with experienced professional sportspeople and coaches,

during which they experimented with the detailed view of FitBack and considered its possible use in their practice. The

professionals remarked that the detailed EMG data was easy to interpret for a variety of exercises and that it offered a

way towards a more informed exercise form and increased body awareness. They recognized its potential to support

coaches in confirming correct execution and providing tangible evidence to present to students.

This paper contributes to the HCI for sports area by reporting on two studies of how users interpret rich bodily

signals: (1) a lab study with amateur users and (2) interviews with professional sportspeople. Our results indicate

that amateur and professional users can gain deeper insights into their own physiology through interpreting EMG

signals. The users could immediately grasp the properties of the EMG signal, and they appreciated its information value.

Based on our findings, we conclude with a set of design recommendations about building engaging and informative

EMG-based biofeedback systems for physical activity, which facilitate interpretation.

2 RELATEDWORK

HCI has investigated modalities and exercise forms suitable for tailored feedback. In this section, we introduce relevant

research projects in the context of physical activity and feedback. We additionally take a closer look at biofeedback

modalities and EMG as input for HCI applications.

2.1 Biofeedback

Biofeedback is a type of physiological-driven feedback, where physiological responses of a user are voluntarily measured

and communicated with the user at the same time to create a feedback loop [10, 23]. Biofeedback has recently been

extensively used in rehabilitation and treatment of disorders such as stroke rehabilitation [13], anxiety [53], or substance

abuse [64]. A typical biofeedback session exposes the user to a visualization of a physiological signal that is correlated

to a disorder. Users are instructed to proactively act towards a desired signal, where the physiological signal is usually

visualized in a simplified form. In contrast to raw signals such as brain activity [17, 43] or heart rate variability [74],

simpler visualizations are easier to understand by laymen. Results from previous work showed that biofeedback has a

strong influence over physiological functions and offers users several advantages over traditional treatments, including a

visible metric for reflection, progress, and ongoing involvement of the treatment process [58]. For example, biofeedback

has been successfully employed for stroke rehabilitation [13], posture corrections [57], treatment of neurological

impairments [65], and substance abuse [51]. Apart from medical treatments, biofeedback has shown potential to

improve training efficiency, as highlighted in the following section.

2.2 Fitness and Feedback

The HCI field has recognized possibilities for interactive artifacts to build increased body awareness and thus contribute

to a better experience and skill development in sports. Being more aware of the relative position of one’s body has

been shown to benefit those practicing yoga [68] or swimming [42]. However, gym exercises, perhaps due to their

static nature, received more extensive attention. A number of projects proposed using different sensing modalities for

recognizing exercise execution such as inertial measurements [47, 54, 71], pressure sensors [18, 66] or cameras [9, 41].
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Also, the now discontinued Myo
1
armband could effectively differentiate between various gym exercises [45]. While

these systems offered effective ways to count execution or assess the correctness of the motion, they did not enable

the user to determine if the correct muscles were used in their exercise. Our work examines the possibilities of direct

muscle monitoring and investigates the opportunities of the user possessing that knowledge.

Another strain of HCI work recognized the benefits of helping users understand their own bodies through additional

feedback. Turmo Vidal et al. [70] built wearable lights that could be customized to enhance the perception of relative

body position, improve exercise technique and facilitate instruction [69]. They showed that additional insight during

activities can lead to skill development. Earlier, Hämäläinen [31] suggested using the mirror metaphor, which is

particularly suited to gym exercises as fitness clubs usually feature mirrors. Anderson et al. [4] developed an Augmented

Reality (AR) mirror system which tutored users in gym exercises. Past work shows many opportunities for possible

interventions at the gym and a need for users to understand their bodies better in order to train better. However, it

remains an open question what sensing and feedback offers the most benefits to users and how it can be adopted into

exercise environments. Our work is different from past research as it specifically investigates what happens when users

are aware of their muscle activity and how they can benefit from this knowledge.

2.3 EMGxHCI

Contracting specific muscle groups of our body allows us to position ourselves and direct our extremities. This muscle

contraction happens along the muscle fibers and generates an electric field. Using surface electromyography (sEMG),

this field can be measured and quantized. As a result, electromyography provides excellent access to a person’s

muscle exertion. Already in the early 20th century, researchers investigated the interplay between neural activity and

muscle contraction [1]. While EMG has its main area of application in clinical settings for diagnostics and prosthetic

control [5, 30], the last two decades have shown the feasibility of interactive systems leveraging EMG-based interaction in

the domain on human-computer interaction (HCI). Important research includes work by Costanza et al. [12] highlighting

properties of isometric muscle activation for intimate interaction as well as a seminal work by Saponas et al. [59]

showcasing the potential of EMG for muscle-computer interfaces, detecting gestures using a circular array of electrodes

around the forearm. In more recent work, Karolus et al. confirmed these findings in particular for fine gestures in a

guitar tutoring [39] and piano playing scenario [37]. An inherent challenge of EMG-based interfaces is engineering

user-independent classification algorithms. Works by Kerber et al. [40] and Huang et al. [34] showcase possible solutions

to this issue. While the first one relies on a robust classification approach, the latter work leverages implicit calibration

to collect data samples without interrupting the user. Similarly, advances for electromyographic sensing with low-cost,

mobile devices are essential, such as follow-up work from Saponas et al. [60] and most recently printable electrodes for

rapid fabrication of on-skin interfaces [55].

In the form of biofeedback, EMG has proven to be effective for behavioral change and rehabilitation [2, 32, 52] as

well as strength acquisition [14, 22]. Work by Toader et al. [67] showed that users adapted their exercise form after

receiving visual EMG-based biofeedback compared to a control group with no feedback. With FitBack, we extend their

work and investigate the influence of different feedback modalities on performance and the users’ perceived awareness

of their body posture and movements.

1
https://support.getmyo.com/hc/en-us

https://support.getmyo.com/hc/en-us
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On the consumer market, readily available products which use EMG-based biofeedback for physical activity, such as

Athos
2
, Myontec

3
, and Mpower

4
are primarily aimed at sports professionals and competitive athletes. Athos relies on

post-hoc reports and Myontec reports on exertion over the course of the whole training session. In FitBack, we rely

on displaying live muscle activity allowing users to grasp timings of exercise forms, similar to the activation curves

provided in Mpower. All commercial systems rely on pre-configured smart clothing and tailored algorithms, limiting

the set of exercises that can be monitored. Lastly, these devices provide very specific feedback, designed for professional

athletes and post-exercise analysis with professional coaches. While the technology is available, albeit, for a high price,

it remains to be investigated how everyday users can benefit from detailed biofeedback. As one solution to allow for

more scalable solutions for exercise monitoring, our work envisions user-driven interpretation of collected data with

the aim to provide deeper bodily insight. Consequently, this work examines if and how EMG-based biofeedback can

foster reflection on exercise form to further the users’ understanding of their body physiology.

3 METHOD

Our investigation is informed by previous research, including technical and design requirements. Commercial systems

and research probes established that EMG is an effective method to support fitness exercises. However, there still a need

to understand the design principles for interactive technologies which empower users to understand muscle activity.

In this work, we evaluate if the access to detailed muscle activity can facilitate an improved understanding of one’s

own body physiology. With increased insight into how their body reacts to exercise, users will experience more health

benefits [50] and develop expertise [46].

To explore this, we replicated existing feedback methods as a baseline, but opted for a low-cost mobile prototype,

which makes EMG-supported sports exercises accessible for amateurs. Accordingly, we chose an exploratory approach

by first building a mobile prototype capable of recording electromyograms via adhesive electrodes. We used this system

to explore requirements and resulting technical constraints, asking how feedback should be conveyed, what is the

optimal temporality, and what audience can benefit from such a system. For the latter, we identified two main audiences,

namely novice to experienced independent users who engage with the feedback directly, and fitness coaches who aim

to gain deeper insights into their student’s exercise form.

Thus, we employed a mixed-method inquiry consisting of a user study with 18 novice to experienced participants

(Study I) and interviews with sports professionals and coaches (Study II). This allowed us to capture opportunities,

requirements, and constraints for using interactive muscle sensing and biofeedback during physical activity. We

structured this investigation into two main research questions:

RQ1: Is supporting users via EMG-based biofeedback during physical activity technically feasible with a
low-cost EMG device?

This research question investigates technical constraints that arise from mobile electromyograms. Existing research [39,

60] and commercial products (Section 2.3) have already demonstrated the feasibility of EMG for recognizing body

movements, highlighting the importance of mobility for such systems and focusing on data-intensive post hoc analysis.

Consequently, we provide a technical evaluation of amobile, low-cost EMGdevice (FitBack) with regard to (1) recognizing

the correct form of fitness exercises and (2) the feasibility to accurately and effectively visualize muscle activity of users

2
https://www.liveathos.com/

3
https://www.myontec.com/

4
http://www.mpower-bestrong.com/index.html

https://www.liveathos.com/
https://www.myontec.com/
http://www.mpower-bestrong.com/index.html
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in our experimental investigation (Study I). We used the bicep curl as an example exercise, suitable for beginners and

experienced sportspeople. Besides the technical evaluation, we evaluate user experience, perceived workload, and flow

experience during the exercises when interacting with FitBack.

RQ2: How can we design EMG-based biofeedback to facilitate bodily insights during physical activity?

Here, we look at different feedback modalities (visual and auditory) and granularities for a broader audience (amateurs

and coaches). The system should provide easy access to bodily insights both for novices and more experienced

practitioners while providing necessary details for experts and coaches to find the perfect form. We compare existing

designs with detailed EMG feedback through rankings and evaluate opportunities (Study I). We additionally conducted

semi-structured interviews to gain further insights into how participants in this first study perceived their body

awareness. Further, we conducted interviews with sports coaches (Study II) to finalize a design suitable for a variety of

exercises. The interviews also enabled us to explore how EMG feedback can be leveraged in a coaching scenario. We

focus our analysis on the collected qualitative data and derived themes from the interviews for this research question.

4 STUDY I: EXPERIMENTAL INVESTIGATION OF EMG-BASED BIOFEEDBACK

In this first evaluation, we focus on one particular fitness exercise and test different feedback types and granularities using

FitBack. Hence, we first confirm that EMG-based biofeedback is technically feasible using a low-cost recording device,

before finalizing design requirements for physical activities in Study II. This section first introduces our implementation

of FitBackand reports on the employed study design, used measures, procedure and participants.

4.1 Apparatus

FitBack is an integrated system that records and processes EMG data. The system is closely adapted from EMBody
5
[38],

a toolkit for EMG-based interface prototyping. In fact, the hardware is identical, only the software components were

adapted as outlined below. FitBack was developed with requirements for physical exercises in mind, such as mobility,

allowing users to freely move around. Different feedback modalities and granularities allow FitBack to cater to a broad

audience of users, while a simple but robust detection algorithm is used to recognize exercise repetitions. The following

section provides an overview of the implementation of FitBack.

4.1.1 Hardware. FitBack’s hardware is based on an ESP32 microcontroller
6
, which is a low-cost and low-power system

on a chip with integrated WiFi. We measure EMG using a bipolar measurement technique [52] including a reference

electrode and two sensing electrodes to minimize noise artifacts. Amplification is realized through an existing design
7

that we adapted for our purposes. The amplified signal for each channel gets processed by the ESP’s Analog Digital

Converter (ADC) yielding a 12 bit resolution. Measurements are broadcasted over the network via UDP at a sampling

rate of 200𝐻𝑧, which is sufficient for the following filtering steps (see Section 4.1.2). The whole hardware system can

be powered by powerbank and fits in a 3D-printed case allowing it to be carried around by the user. Please refer to

EMBody’s [38] github
5
for a complete overview and all resources.

4.1.2 Software. To process incoming EMG data, FitBack includes an accompanying software application that receives

the data samples and extracts important EMG indices (see Section 4.2) to generate biofeedback. First, a bandpass filter

5
https://github.com/HCUM/embody

6
https://www.espressif.com/en/products/socs/esp32

7
www.github.com/BigCorvus/2-Channel-Biopotential-Amp

https://github.com/HCUM/embody
https://www.espressif.com/en/products/socs/esp32
www.github.com/BigCorvus/2-Channel-Biopotential-Amp
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between 2𝐻𝑧 and 100𝐻𝑧 is applied [59], reducing long-term drifts and high-frequency noise. A follow-up bandstop

filter between 49𝐻𝑧 and 51𝐻𝑧 removes interference from power line noise. Secondly, FitBack calculates epoched root

mean square (RMS) features with a window size of 40 samples
8
. RMS values can be seen as a proxy for the amplitude

of the EMG signal, hence increasing when muscular activity increases [52]. To counteract fluctuations that might be

confusing to users, a Savitzky-Golay filter [61] was used. After these processing steps, the signal is visualized (see

Section 4.2).

To detect individual exercises, FitBack further cross-correlates the RMS signal with a target signal which is acquired

for each participant during the calibration phase before the experiment. A large correlation coefficient indicates an

alignment between the target signal and the incoming signal during the experiment. The correlation value is used to

determine whether individual trials were correctly performed by aggregating the values for all muscle groups that were

measured (see Section 4.3).

4.2 Design

We chose the bicep curl as a reference fitness exercise. This simple exercise is suitable for beginners as well as popular

among experienced practitioners [8]. Additionally, it involves only a few selected muscle groups (biceps and deltoid)

allowing for easy electrode placement [16]. Despite its simplicity, the bicep curl still leaves a certain margin for error,

such as performing curls too fast or using the deltoid to aid in lifting the weight. This significantly reduces the training

effect and can lead to injuries [8, 16]. Figure 2 shows two examples from filtered EMG signals including the bicep as

well as the deltoid. The left side illustrates a correct execution involving exclusively bicep activation, while the right

side shows a bad example using the deltoid during the repetition. Focusing on a simple exercise with a clear sequence

allowed us to evaluate the suitability of EMG-based biofeedback with a special focus on different needs from a diverse

audience (novices vs experienced sportspeople).

1000 1050 1100 1150 1200 1250 1300
0

200

400

600

800

1000

1200

1400 biceps
deltoid

450 500 550 600 650 700
0

200

400

600

800

1000

1200

1400 biceps
deltoid

Fig. 2. Example EMG data for a correct (left) and incorrect (right) bicep curl. The incorrect example clearly shows excessive deltoid
use (orange) compared to bicep use (blue). Time (in samples) on the x-axis; muscle activation (as RMS values) on the y-axis.

Design decisions for feedback modality and granularity are informed by past work on EMG-based biofeedback [52]

and self-reflection [49] (cf. six kind of questions). Visual feedback enables detailed and concise feedback and allows users

to observe different muscles [48] or different muscle regions [32]. Varying temporal granularity additionally enables

users to capture the timing of their muscle activation [2]. However, visual feedback can be problematic where users are

8
Corresponds to 200𝑚𝑠 ; a hop size of 0.5 times the window size was used. Parameters are based on preliminary tests.



MobileHCI ’21, September 27-October 1, 2021, Toulouse & Virtual, France Karolus et al.

required to visually observe and control their actions. Hence, we introduce auditory feedback as another modality. For

both modalities, we implement the most commonly used indices [52]: EMG amplitude and timing of muscle activation

as detailed in the following sections. We employed a mixed design that used the visualizations as within-subject and

the sound cues as between-subject factor. All participants were instructed to exercise with each visualization while

the presence of the sound cues was varied per participant. We note, that the employed modalities and indices are

predominantly used in the introduced commercial products as well. While there are other viable feedback modalities

(e.g. vibrotactile), the investigation of this work is primarily focused on visual feedback, due to the high bandwidth

constraints of conveying rich EMG data.

4.2.1 Visual Feedback. FitBack implements three different feedback visualizations that change according to the mea-

sured muscle activity: Bars, Circles, and Lines as illustrated in Figure 3. Bars and Circles present an abstracted EMG

signal to the user based on the EMG amplitude. In contrast, the Lines visualization shows a smoothed version (see

Section 4.1.2) of the raw EMG signal to the user over time Here, we hypothesize that abstract visualizations can

increase the understanding of laymen of the complex signal [11]. Direct representations of the signal, such as the Lines

representation, provide deeper insights into the training efficiency, offering a finer granularity for amplitude and timing.

While this visualization is potentially more difficult to understand for novices, it offers most details and the biggest

potential for user-driven interpretation.

All visual representations provide a target zone that needs to be reached during the execution of an exercise, such

as high bicep activation marked by an orange area at the far end of the respective visualization. An avoid zone is

implemented for the deltoid in analog fashion.

Biceps Deltoid

Optimum Avoid

Biceps Deltoid

Optimum Avoid

Biceps Deltoid

Optimum Avoid

Fig. 3. FitBack visualizations showing the same EMG data. Abstract representations Bars (left) and Circles (middle), and the detailed
representation Lines (right).

4.2.2 Auditory Feedback. In addition to visual feedback, FitBack utilizes auditory feedback to communicate correctly

executed repetitions of an exercise. Apart from their use in biofeedback [52], auditory cues have been verified as a

suitable modality for successful actions [24], warnings [25], or errors [44] in various research projects. FitBack plays a

positive auditory cue when a repetition has been executed correctly, while faulty exercise form is reported by a negative

cue. In our case, the respective sound is played when the measured signal reaches the target or avoid zone.
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4.3 Measures

For our data collection, we focused on the following aspects in relation to our research questions: (1) participant

performance of the executed bicep curls, (2) usability and perceived workload when exercising with FitBack and (3)

impact of feedback type on exercise form.

4.3.1 Participant Performance. For our analysis, we collected a total of three performance metrics detailing how

accurate participants executed the biceps curls. These include a binary coach rating, the binary rating from FitBack,

and a post hoc rating (7-item Likert), as detailed below.

Coach rating. During the experiment, we collected performance assessments by the experiment instructor (a sports

professional), who judged (silently) each execution as correct or incorrect. Contrary to the calibration phase (cf. Sec-

tion 4.5), the instructor relied solely on the visual inspection of each execution and had no access to the EMG signal.

This constellation mimics a standard practice session where the coach can only observe the disciple.

FitBack rating. Additionally, we logged FitBacks’ assessments of the trial. Here, preliminary tests have shown that a

correlation value of greater than 0.5 for both the bicep and the deltoid signal indicated correct execution of the exercise.

Details on the correlation algorithm are provided in Section 4.1.2.

Post hoc rating. Lastly, we conducted post hoc reviews of the collected EMG data. The three reviewers are researchers

who use EMG-based systems daily and are familiar with the fitness exercise. They were presented with the EMG signals

(cf. Figure 2) of each execution after the experiment and rated them on a 7-item Likert scale. A set of example executions

(covering correct and incorrect trials during the study) served as orientation. Correct execution was rated highest,

while points were deducted for bad form, such as lifting with momentum or using excessive deltoid activation
9
. We

additionally confirmed the inter-rater agreement of the three reviewers using the 𝑟𝑊𝐺 ( 𝐽 ) agreement index [35]. A value

of 𝑟𝑊𝐺 ( 𝐽 ) > .99 confirmed high agreement. We subsequently transformed the averaged post hoc ratings into a binary

scale by categorizing all executions rated 4 and higher as correct. Executions with this rating only exhibited minor

flaws and could be considered correct. This allowed us to compare all three assessments in our results (cf. Section 4.6).

4.3.2 Questionnaires. We measured the Usability Metric for User Experience (UMUX) [20] to identify FitBack’s user

experience and detect potential flaws when exercising with it. To assess perceived workload during the exercise, we

employed the NASA Task Load Index (NASA-TLX) [27] in its raw form without the weighting process [26]. We further

used the flow experience questionnaire [63] to measure the participants’ engagement in the training exercises. Finally,

we asked custom questions
10

which addressed feedback ranking its perception and influence during the exercise.

4.3.3 Interviews. We conducted semi-structured post-hoc interviews with all participants. Interviews took approx-

imately 10 minutes each. We made sure to cover relevant topics including technical elements such as influence of

electrodes and perceived latency of the shown feedback. Additionally, we inquired about their perceived confidence in

the feedback and had them enumerate some of the advantages and disadvantages of different feedback types from their

view, including auditory feedback if applicable. Lastly, we investigated possible application scenarios with FitBack.

9
The rating form and examples are provided as supplementary material.
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4.4 Participants

For our first study, 18 participants (four female, 14 male) with a mean age of𝑀 = 25.6𝑦 (𝑆𝐷 = 3.24𝑦) were recruited

from university mailing lists. The average self-reported general fitness experience
10

was 59.3 (𝑆𝐷 = 22.77) and 42.3

(𝑆𝐷 = 29.81) for experience in weight training
10
. Participants trained 3.2ℎ per week on average (𝑆𝐷 = 1.54ℎ). Each

participant was compensated with an equivalent of USD 12 in the local currency.

4.5 Procedure

The experimenter welcomed each participant and explained the intention of the study. After providing informed consent,

participants stated their fitness background and demographic data. Next, they received an introduction on how to

perform a correct bicep curl and were made aware of common mistakes. Electrodes were placed on the participant’s

dominant arm on the bicep and deltoid muscles (see Figure 4). The experimenter then picked weights that were

appropriate to the participant’s fitness level. Afterward, the calibration started in which a visualization dictated the

rhythm for the bicep curl repetitions. The experimenter verified the correctness of the bicep curls during the calibration

phase, both visually and via the EMG data. After successfully calibrating a target signal (cf. Section 4.1.2) for the

participant, the experiment started. Participants were given some time to familiarize themselves with each visual

condition before starting ten bicep curl repetitions for each condition, yielding a total of 30 repetitions per participant.

Note that sound cues were used as a between-subject variable, hence each participant either saw all three visualizations

with sound cues or completely without sound cues. Participants filled out the questionnaires for each condition during

short breaks. The experiment was concluded by removing the electrodes and conducting the short interview. In total

the experiment lasted approximately one hour.

Fig. 4. Electrode placement on biceps (left) and deltoid (middle) muscles. Reference electrodes can be seen close to the scapula. On
the right side: participant during the study.

10
Measured on a visual analog scale (VAS): 0 to 100.
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Fig. 5. Confusion matrices (associated truth labels on the y axis) between coach—system (left), post hoc—coach (middle), post
hoc—system (right). Note that percentages are based on within-class instances (per row), as class distribution is highly skewed.

4.6 Results

We report on the statistical analysis of measured usability measures as well as feedback ranking and perception. For

each measure, we conducted two-way (visualization and sound) mixed ANOVAs. If the data deviated from normality, we

first aligned rank transformed [72] it. Scripts and raw data are provided in the supplementary materials for additional

details. Further, we present an analysis of FitBack’s accuracy in detecting correct exercise form and include a qualitative

analysis based on the interviews.

4.6.1 Judging Exercise Form. To evaluate the validity of the presented performance ratings (cf. Section 4.3), we compare

the ratings against each other. Here, the coach rating provides a gold standard for feedback in a standard training

session, while the post hoc rating allowed us to acquire a more accurate look at involved muscle activity. The rating of

FitBack demonstrates the feasibility of a simple detection mechanism for this type of exercise. We provide an overview

of all comparisons in Figure 5.

On the left side (Figure 5), the confusion matrix between the coach rating and the FitBack rating shows a good degree

of consensus. In 76% of executed trials, the coach and FitBack issue the same rating. It is noteworthy that the class

distribution (as rated by the coach) is unbalanced
11
: the good (correct execution) class contains 519 samples, while the

bad (incorrect execution) class only contains 21. In approximately a quarter of cases for each respective class
12
, the

rating by the coach and FitBack’s assessment differ.

While the coach only relied on a visual inspection of the exercise, FitBack had access to the EMG signal but uses a

simple algorithm to predict correctness. Here, we introduce our post hoc rating. It allowed us to further utilize the

EMG signal through manual inspection of the exercises, providing a much more fine-grained analysis than FitBack.

Consequently, we considered these ratings to be most conclusive when rating the exercise form of the participants.

The confusion matrix in the middle and on the right (Figure 5) shows the respective comparison of the coach rating

and the FitBack rating with the post hoc ratings. The class distribution is slightly less unbalanced: 469 for good and

71 for bad. The comparison with the coach rating shows near-perfect unison for correct executions (good class), yet

the coach fails to recognize up to 87% of bad executions. This highlights that having access to the actual EMG data

improves the judgment of exercise form, as involved muscle activity can be observed accurately, and false activation

(e.g., deltoid usage) cannot be masked by the participant. This also explains the high degree of consensus for good

executions, as correct muscle activation inevitably results in the correct visual manifestation of the exercise.

11
An artifact of the experiment, as participants were generally good at performing the exercise.

12
124 for good, 5 for bad.
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Fig. 6. Post hoc ratings given the shown visualization and sound feedback. Significant differences are marked with *.

The comparison with FitBack on the far right side (Figure 5) illustrates that the system is generally stricter than our

post hoc rating, only recognizing 77% of correct executions. However, the system correctly predicts nearly half of the

bad executions, outperforming the coach in this regard. We attribute the mixed predictions of FitBack to its simple

algorithm. While more elaborated algorithms may yield better performance, we note that recognizing correctness is not

the main purpose of FitBack but rather visualizing their own EMG signal to users. This added information has already

shown insightful for versed practitioners (cf. post hoc rating). In the following, we evaluate if this is also the case for

laymen users of EMG.

4.6.2 User Performance. We further tested the performance of the participant with regard to correct exercise form as

judged by the post hoc rating, given visualization and sound in Figure 6. We found a significant effect of visualization

(𝐹 (2, 518) = 3.93, 𝑝 < .05) and a two-way interaction effect of visualization and sound (𝐹 (2, 518) = 3.80, 𝑝 < .05).

Post-hoc pairwise comparison using tukey-adjusted p-values showed a significant difference between the visualization

Bars and Lines as well as between Bars and Circles. We found one significant two-way interaction effect between Lines

and Circles for the factor sound (No - Yes).

4.6.3 Questionnaires. We did not observe any significant differences for either the NASA-TLX, the UMUX nor the

flow experience questionnaire. Descriptive statistics for each condition are listed in the supplementary material. Our

analysis of the custom questions polling feedback ranking and perception did not show any significant differences. A

graphical representation and the complete data is provided in the supplementary material.

4.6.4 Interviews. All interviews (1:39 hrs of recording) were transcribed verbatim. We opted to conduct a focused

analysis based on the pragmatic approach by Blandford et al. [7]. To do so, three researchers open coded a representative

17% of the material. In a discussion, the researchers agreed on an initial coding tree. The rest of the material was evenly

split between the three coders and coded separately. A concluding discussion refined the coding tree and surfaced a

code hierarchy with four themes: Feedback Type and Granularity, Cognitive Effort, Gaining Insights and User

Acceptance. The following section presents the content of each theme and associated quotes.

Feedback Type and Granularity. Participants commented extensively on advantages and disadvantages of the different

feedback types and granularities. All visualizations were understandable for the participants, but there were clear

favorites in terms of when and how to use them. For example, the abstract visualizations (Bars, Circles) were perceived

as straightforward and easy to interpret:

It was evident what needed to be done. When the [deltoid] was red, one had to correct one’s shoulder movement. (P3)



Facilitating Bodily Insights Using EMG-Based Biofeedback MobileHCI ’21, September 27-October 1, 2021, Toulouse & Virtual, France

The detailed Lines feedback allowed for a more detailed analysis of the executed exercise. Additionally, participants

remarked that Lines provided them with a more profound temporal component, as it displayed a history of values that

was not present for the abstract visualizations.

When asked about the sound feedback, some participants commented that they felt it was more discreet than the

visualizations allowing them to focus on the exercise, while others preferred the visual feedback. Interestingly, the

additional sound feedback provided some participants with a feeling of accomplishment whenever they perceived

positive sound feedback:

It was a short feeling of accomplishment. That motivated me. (...) that could be integrated well into one’s training.

(P17)

Cognitive Effort. Participants reported that the level of cognitive effort they needed to invest into understanding

and interpreting the feedback varied. Abstract visualizations (Bars, Circles) are less cognitively demanding, while the

detailed Lines feedback was more demanding and required additional concentration, occasionally interfering with

exercise execution:

To just do one exercise; the lower fidelity is more pleasant and less cognitively demanding. (P13)

Gaining Insights. Participants commented on how FitBack helped them to understand their muscle activity during

the exercise and supported them in finding mistakes and incorrect form. It helped them to establish an understanding

of their own exertion:

If you are not that familiar with muscles, then the system shows this quite well and you get better awareness for

specific muscles, especially those that one has not used. (P15)

By doing so, FitBack facilitated their learning process, making them aware of their movements and supporting correct

exercise execution. Participants remarked that it was straightforward to map their movements to feedback provided by

FitBack.

User Acceptance. Participants relied on the feedback from the system when correcting their exercise form. They

appreciated that mistakes were transparent for them and could be rectified immediately:

If I know that I do something wrong and that this is visualized, I can clearly imagine how to get rid of it. (P9)

On a more technical side, we also investigated whether the electrode setup and the induced latency for the abstract

feedback posed any issue for participants. Most participants reported that neither influenced their exercise rhythm. It

was noted however, that the required setup needed to be kept minimal for FitBack to be feasible in a daily workout.

Another idea mentioned by the interviewees was the integration of electrodes into wearables such as sport shirts

and trousers. This would minimize setup time and would make FitBack much more accessible for short daily workouts,

also reducing social stigma as remarked by a few participants:

If there could be a wearable that includes the device and cables, e.g. a shirt with electrodes inside, that you can just

wear, that would be different. Then you would just need to wear the shirt. (P6)

4.7 Summary

While the results from our quantitative analysis showed that Lines and Circles outperformed Bars in terms of actual user

performance (as measure by the post hoc ratings), Bars was ranked highest by participants. In our follow-up interviews
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we found that detailed feedback was more favored by experienced practitioners
13

and in situations where the user

wants to perfect exercise form. Abstract feedback, such as Bars, was preferred by less experienced users and for daily

workout scenarios. In general, all forms of feedback were noticed by the participants and used to adapt their exercise

form to a large degree as confirmed by our custom questionnaire, highlighting the viability of EMG-based feedback to

facilitate bodily insights.

While usability and perceived workload metrics showed no significant differences for feedback type, interviewees

reported that Lines required higher cognitive effort, mostly to understand the complex signal. This might have been

masked by the fact that users were always monitored by the system, hence implicitly forcing them to concentrate more

as stated in the interviews.

Further, our experimental investigation with FitBack demonstrated that low-cost EMG sensing devices are suitable

to monitor exercise form. While accurate detection of correct form is not possible with the employed algorithm, this

analysis showcased that having access to detailed EMG data is beneficial to judge exercise form for both laymen and

versed practitioners. Hence, in this next evaluation step with sports professionals, we put emphasis on this aspect by

allowing them to monitor the EMG signal in detail to explore a variety of exercises.

5 STUDY II: INTERVIEWSWITH COACHES

Our initial study confirmed the feasibility of building an EMG-based exercise assistance system and showed the breadth

of the design space. In order to further understand the requirements and constraints involved in using EMG systems for

physical activity in general, we conducted a series of interviews with sports professionals in which participants used

FitBack in an open-ended exercise session.

5.1 Participants

We recruited four experts who were career sports coaches with different backgrounds and varying levels of experience,

see Table 1. We recruited the experts through contacts at sports clubs whose members had participated in previous

studies conducted by the research team. None of the participants had used EMG systems before, but they had all tried

Electrical Muscle Stimulation (EMS) as part of their profession. The interviews took place at locations chosen by the

participants. We provided shopping vouchers for the equivalent of USD 12 for participating in the study.

Table 1. Information about the participants in our study. The sports professionals specialized in different sports and had different
levels of experience.

Participant ID Age Gender Expertise Experience

P1 32 M Personal trainer 8 y

P2 27 F Yoga 4 y

P3 36 M Martial arts 15 y

P4 33 M Martial arts 15 y

5.2 Procedure

The interview session began by obtaining written consent for participation and recording. Next, the researcher prepared

the FitBack system in a location chosen by the participant. A voice recorder and a video camera were used to record

13
As indicated by their weight training experience.
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Fig. 7. Participants during the exploration phase performing different exercises.

the session. We then conducted the initial part of the interview, which concerned the participant’s background and

experience with EMG/EMS. Afterwards, we asked them to choose a movement form that was particularly difficult

for their students and indicate which key muscles were involved in that movement. Upon choosing the exercise, the

researcher attached electrodes to the key muscles. FitBack was started and muscle activity was visible. We then asked

the participant to perform the motion correctly and incorrectly. We encouraged them to explore different possible

mistakes and to examine how FitBack reacted to changes in movement (see Figure 7). We also answered any questions

the participant may have had while exploring the system. When they indicated that they were done experimenting

with the motion, we conducted the next interview part. These questions explored the participant’s interpretation

of the EMG signal, differences between signals from different muscles, the suitability of the feedback for everyday

coaching and identifying mistakes in movement. We then allowed the participant time to rest and repeated the same

procedure for another type of motion. Finally, we conducted an interview where we inquired about the differences in

feedback between the two exercises, the possible target user groups for EMG systems, the use of EMG for professional

development and requirements for everyday integration. The entire session was recorded on video, and additional voice

recording was used when asking interview questions. We also recorded the FitBack screen.

5.3 Data analysis

All interviews (2:16 hrs of recording) were transcribed verbatim. Given the volume of the data, we again followed the

pragmatic approach to qualitative analysis as recommended by Blandford et al. [7, 53]. In an initial analysis step, two

researchers open-coded one interview to identify key concepts. We then conducted a discussion, which resulted in an

initial coding tree. The remaining material was then evenly split between the researchers. Afterwards, all authors refined

the coding tree in iterative discussions, finally creating a code hierarchy with four themes. These themes represent the

key aspects of using EMG in sport coaching practice discussed by the experts.

5.4 Findings

Here, we present the results of the interviews with the sports professionals. We identified four themes in the accounts

of using EMG provided by the experts: Assessment, Body Awareness, Exercise Form and Interpretability. Quotes

from the interviews are accompanied by the participant ID and, if applicable, the exercise which they were describing.
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Assessment.

This theme describes how the coaches used EMG feedback to assess the correctness of a given body position and how

they identified issues with posture. We observed that the experts quickly reflected on EMG data and related the reading

to their current movement. Interestingly, low EMG signal was as interesting as high muscle activation, because some

exercises required relaxing muscles:

This is very easy to apply when I’m in a static position, which I want to hold. When I’m doing this correctly, I am

more or less relaxed. (P4, cadeira)

The experts also described another way to effectively use EMG to assess correctness which was to determine if the

right muscles were active during a specific movement. P1 explicitly addressed how specific muscles should work during

push-ups.

I can see if I’m activating the deltoid when moving up, as I should. [FitBack] tells me if I’m beginning the movement

by raising my shoulder and using the descending part of the trapezius. (P1, push-ups)

Finally, he also reflected on the impact that being able to objectively assess an exercise would have on fitness instruction.

Being able to confirm one’s professional opinion with objective data was seen as an opportunity for proving the coach’s

credibility.

Body Awareness.

EMG was perceived as a way to see beyond what they could perceive using their professional insight. P2 remarked that

FitBack could be used to determine what muscles were targeted in new exercises, previously unknown to the coach and

their students:

You often see those things online: “100 best planks” etc... but you never fully know what these exercises do. With

[FitBack], you can see what’s inside, check if [the muscle] is even contracting. (P2)

EMG also allowed the experts to better understand the transitions between different body postures and movement forms.

While they knew what muscles were to be active (or inactive) during defined exercises, EMG allowed investigation into

what happened in the intermediate stages of the movement. P3 analyzed how his body worked while adjusting his

posture in a complicated handstand:

When I changed the alignment of my body, moved my legs, you could ideally see where I contracted the muscle

very hard and where it was weaker. (P3, queda de rins)

Exercise Form.

This theme describes how EMG was used to reflect different exercise styles and different ways of understanding physical

activity by coaches and their students. The coaches were eager to speculate on how different types of their class

attendees may have perceived the feedback. In contrast to assessment, here, the experts described implicit, less defined

qualities that can be inferred from EMG data. The need to place EMG electrodes implicitly required reflecting about the

key muscles involved in the exercise:

Figuring out where to place the electrodes is interesting by itself. If I were to do this myself, I would experiment

with this, stick it somewhere, check it out. (P4)

The additional information provided by FitBack facilitated exercising while being aware of the benefits of the exercise.

P1 commented extensively on how past philosophies of training promoted maximum exertion, while more modern

methods preferred targeting specific muscles and avoiding injury. He saw EMG as a way to facilitate this transition

from simple exertion to informed practice:
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All the way, just to get super tired and feel pain. If you can’t push through the pain, then you’re weak. (...) But, the

modern school of training is not about lifting very heavy bars. You’re supposed to slowly learn how to activate

specific muscles. I think that most people appreciate that in the long run. (P1)

The coaches provided many comments on the temporal aspect of EMG data. They reflected that timing was differently

important in various exercises and requested more control over the time scale. Especially P3 and P4 (martial arts

specialists) remarked that a change of tempo and thus change of the speed of muscle activation was a key aspect of

their practice:

It can be used for all the static exercises. I imagined that for dynamic things, it might be different. Capoeira has the

full spectrum of exercises and thus paying attention to relaxing muscles is important. (P3)

Interpretability.

The coaches commented extensively on how they interpreted the output produced by FitBack. They wondered about the

form and timing of the feedback and anticipated possible deployment in their exercise classes. The experts anticipated

how their students would understand EMG data and how FitBack could benefit the training process. The coaches

remarked that EMG in the form presented by FitBack would be too difficult to monitor for larger fitness classes:

It would be tough for classes where we have a lot of people. One coach won’t be able to interpret the muscle behavior

of many people. But, for personal training, this would be very suitable. (P3)

The experts remarked that EMG had the potential for changing achieving proper form in exercises from a vague pursuit

of correctness to a tangible goal. P4 reflected on how a well-known exercise was a challenge when FitBack provided

detailed feedback:

It was very stimulating because I was trying to do the exercise better so that it was more visible on the screen, (...)

because I like tangible challenges. (P4, primera)

Our experts underlined the importance of associating specific EMG responses with proprioceptive perception, i.e. ‘how

a movement felt’. As most fitness classes focused on mastering specific forms and limiting the use of incorrect forms,

quantifying how far one was from an ideal movement was key to interpreting the EMG data and one’s body. One

participant saw FitBack as a tool for iteratively developing more precise movements and fine-tuning one’s performance.

EMG data enabled minuscule changes to posture which would be visible in the measurement data, but hard to perceive

with one’s senses.

In functional training, where the key goal is developing correct movement patterns, the basic movements are key.

Here, [FitBack] can be very useful, guiding you to find the ideal ratio, the perfect movement. You can then copy the

movement and master its execution (P3).

6 DISCUSSION

Our investigation showed the potential of EMG-based biofeedback to facilitate bodily insights during physical activity.

In this section, we draw implications and present opportunities for future systems. We conclude with a list of guidelines

for designing for EMG-based biofeedback that allows users to increase their own body awareness.

EMG-Based Biofeedback is Feasible with Wearable Recording Devices.

Our quantitative analysis in the first study showed that both FitBack and the coach rating perform less accurately

than post hoc reviewers who have access to the EMG data when it comes to recognizing exercise form (RQ1). In the

current version, FitBack’s movement analysis is based on correlation coefficients of the respective muscle groups.
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We believe a more elaborated classification approach, e.g., using multiple features to describe relevant characteristics

of the EMG curve, allows one to identify execution more accurately. However, this results in a trade-off between
the amount of customization needed for a specific exercise (e.g., training the model to detect common errors of

biceps curls) and the ability to generalize feedback for a wide array of fitness exercises (RQ1), as illustrated in

Study II. Our findings also suggest that EMG-based feedback can be effectively used to build both prescriptive and

reflective feedback in HCI for sports. EMG-based systems which support exercise can give users explicit instructions

(e.g. as in Gymsoles [18]) or present the signal to be interpreted by the user or coach. This emerges as a key design

choice for future technologies which support amateur athletes.

In this work, we intentionally refrained from building a sophisticated data processing model to keep the amount of

required domain knowledge that informs the model training process to a bare minimum. Building a fully automatic

system to supervise specific fitness exercises is outside of the scope of this paper. We already know from related work

that it is feasible to build accurate detection systems using EMG [3, 39, 59]. In contrast, FitBack is designed to be an

aid for amateurs and coaches alike by presenting data about muscle activity in a comprehensible manner and
letting the user reflect on their data (RQ1), thus contributing to their own body awareness.

EMG-based Biofeedback Increases Body Awareness.

We observed that FitBack provided expressiveness and supported users in gaining bodily insights about their own

muscle activity and exertion, cf. Gaining Insights, Interpretability. Both studies revealed that FitBack was able

to accurately depict transition between body posture, clearly showing active and inactive muscle groups. As a result,

participants perceived which muscles were used. This finding was not only evident for experienced users but also present

for novices. Through increasing one’s own body awareness, FitBack was able to facilitate a tangible learning
process that minimized erroneous execution (RQ2). An area for future research is to investigate whether such

feedback can help maintain correct form over time, which can contribute to reducing injury risk. This is particularly

relevant as experts in our study remarked that FitBack supported informed practice, allowing users to track their

own fitness progress and presenting them with visible achievements that might otherwise have been hard to grasp or

require personal supervision by coaches. Hence, biofeedback supports users in judging their own progress as well as

empowering coaches to provide better feedback (RQ2).

Access to Detail is Beneficial for Practitioners and Coaches Alike.

In our analysis, the detailed feedback was favored mostly by experienced sportspeople. Our interviews with professionals

revealed that the additional temporal component allowed them to analyze their movements in greater depth and

supported them in perfecting their exercise form. Often, minuscule improvements where only visible in the EMG

data, allowing coaches to monitor otherwise invisible muscle activity and curate an appropriate training
response (RQ2). This finding implies that systems in HCI for sports which feature a prominent temporal component

are likely to benefit from EMG-based feedback, which can allow for a high level of fidelity and potential for interpretation.

For example, in golf, an EMG-based system could not only indicate that the user’s body is misaligned (as in the Subtletee

system [73]), but also help the user understand how to alter the movement to achieve the desired posture.

Additionally, both studies highlighted that the detailed temporal feedback was especially useful for dynamic exercises

where the correct sequencing of muscle movements is crucial. Accordingly, an EMG-based biofeedback system should

always provide a feedback view that allows to examine historic data. Future systems can improve the interaction with

this view, by providing exercise markers within the view and even a corresponding recording functionality (RQ1,
RQ2). As a consequence, designers of future technolgies for sports should consider providing detailed feedback for
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reflection-based technique improvement as an alternative to systems which provide automated corrections through

on-body input such as FootStriker [28].

Required Setup for EMG-Based Biofeedback Needs to be Minimal.

To record electromyograms, FitBack requires the user to attach electrodes on respective muscle groups. This is a major

limitation of not only our system but every EMG-based system. While participants reported that the attached electrodes

and cables did not hinder their exercise execution, the required time for setting up the system was deemed acceptable

only for continued workouts or when one wanted to gain additional insights. For daily workouts, the required effort

was rarely deemed acceptable. In this work, we explicitly focused on user requirements and constraints with regard

to the suitability of EMG-based biofeedback to increase body awareness during physical activity (RQ2). We envision

that more biofeedback systems will be integrated into affordable wearable artifacts and clothing in the near

future (cf. PhysioSkin [56], PolySense [33]), enabling easy and fast setup routines as is already possible with commercial

products for professionals.

6.1 Design Guidelines for EMG-Based Biofeedback

During our work, we identified opportunities, requirements, and constraints of EMG-based biofeedback for physical

activity. In this section, we provide a list of design guidelines for EMG-based biofeedback systems to inspire and aid in

the design of future EMG systems for sports.

Offer Feedback Customization.

The different user groups in our study had differing requirements in terms of feedback. FitBack offers two different

feedback modalities (visual and auditory) as well as abstract and detailed representations of the visual feedback. In our

evaluation, we found that while the Bars visualization was most preferred, our interviews and quantitative results have

also shown that access to multiple types allows the system to tailor to a broad audience. There was no feedback form

that would not affect exercise form or was ignored by the participants (RQ1, RQ2). Novice users preferred abstract

feedback that was less cognitively demanding and easy to interpret, cf. Cognitive Effort. On the other hand, switching

to more detailed feedback should always be possible for more experienced sportspeople (RQ2). In the interviews with

coaches, we observed that the understanding of feedback can be different for different movements within the same sport.

Thus, an EMG feedback system for physical activity must offer output that dynamically changes based on
the current activity. This finding is in line with past research in HCI for sports, which showed that customization and

allowing fine tuning was also effective for less complex sensing modalities from accelerometers [73] to note taking [29].

Users exhibited varying preferences with regard to audio feedback. While some participants reported that it helped

them keep their focus during a continued workout without having to look at the visual feedback, others strongly

preferred visual cues, cf. Feedback Type and Granularity. Thus,multi-modal feedback systems should provide
a choice for the user to prevent sensory overload (RQ2).

Allow for Temporal Control.

While our experimental study used only immediate feedback, the interviews with professionals revealed that EMG

data was meaningful for understanding motion in different time horizons. The experts commented on their need to

experiment and establish thresholds of correctness for different exercises, cf. Exercise Form. They also wanted to

establish baselines and be able to review past exercises to draw comparisons, similarly to existing commercial products.

They recognized the benefits of EMG data both in intantaneous use and over entire exercise session. As a consequence,
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future EMG systems for exercise should offer a high degree of control in terms of the time intervals used
to aggregate and display EMG data (RQ2).

Design for Social Context.

Both of our studies showed that participants were eager to consider using FitBack in contexts associated with everyday

exercise. What became apparent in the interviews was that these contexts were primarily social and possible social

interaction impacted possible interpretations of EMG data. As we observed in the Interpretability theme, experts

reported that feedback modalities for individual sessions should be very different from the feedback in group fitness

classes (RQ2). Further, they also noted that the use of EMG could be dependent on a certain fitness philosophy or

mental approaches to a given exercise. Participants in both studies reported that they often changed the social contexts

of their physical activity. Thus, we recommend that the granularity of EMG feedback be adjusted to allow for
adequate interpretation. Producing detailed EMG feedback in a context where it cannot be effectively interpreted is

likely to cause frustration. Future systems should offer detailed data for individual classes and self-monitoring and

ambient and/or summary feedback that would enable coaches in group exercises to monitor the activity of multiple

users (RQ2). Thus, future systems should strive to find a balance between optimally using the expertise of the user and

providing coaches an optimal experience of understanding one’s body. Our research shows that coaches can include the

interpretation of rich feedback in their coaching practice. This is in contrast to past studies, where the role of the system

was primarily to provide a replacement for the coach [39, 73] or cases where coaches identified issues in systems [36].

6.2 Enabling Alternative Use Case Scenarios for EMG-Based Biofeedback

While EMG-based biofeedback is already employed in professional sports to achieve maximum performance, amateur

sportspeople cannot readily benefit from such technologies. In this paper, we showed how EMG-based biofeedback

can support a wide range of users in gaining deeper insights into their own physiology through interpreting the EMG

signals. To further illustrate this aspect, we describe two use case scenarios that highlight how systems like FitBack

integrate into existing training regimes.

6.2.1 Facilitating Body-Awareness for Physical Activities. Jasha recently started to conduct basic strength exercises.

However, Jasha has no insights into the correct execution of the activities. He decides to buy “MusclePower”, a wearable

that recognizes curls via the built-in accelerometer. During the first weeks, he is pleased with his performance as

MusclePower tells him that his exercise form is optimal. However, a friend of his remarks on the excessive tension in

his shoulders during a joint training session and recommends him to try FitBack. Jasha already had a hunch that he

was doing something wrong, as he noticed periodical back pain in the last weeks, but he did not know what he was

doing wrong. With FitBack’s live visualization, he finally recognizes that he uses the muscles around the deltoid too

much and adjusts his exercise form over time. Jasha realizes that the exercise feels different now. He needs to put much

more effort into the movement, and he is finally confident in his exercise form.

6.2.2 A Complementary Tool for Coaches. Maxime is a coach who is training amateur athletes. However, due to training

centers and the accompanied sessions being distributed, Maxime invests a considerable amount of time traveling to her

clients. She is spending most of the time analyzing her clients’ postures, correcting exercise routines. Maxime hears of

FitBack, a system that collects and visualizes muscular activity, which can be viewed remotely. Maxime decided to give

it a try as she can invest the saved travel time to improve her clients’ overall training quality. Maxime is impressed by

how she can correct the athletes’ training postures by viewing the live EMG visualization while providing instructions
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using a video conference system. Additionally, FitBack allows her to record and annotate the visualizations, which is

helpful for post hoc analysis to optimize the training sessions further. By gaining additional insights into her students’

exercise form, Maxime can give more direct feedback and has objective evidence of the correct form.

7 CONCLUSION

In this paper, we investigated how EMG-based biofeedback can facilitate bodily insight during physical activity. Our

two-fold evaluation, consisting of a lab study with amateur users and interview sessions with sports coaches, highlights

the feasibility of this approach. We present implications and design guidelines for future EMG-based systems, allowing

users to gain deeper insights into their own physiology by leveraging user-driven interpretation of bodily signals. Our

work showed that feedback about one’s muscle activity and exertion is beneficial for a broad audience, from novices

to fitness professionals. Here, we found no necessity for complex algorithms preparing the signal for users to ease

understanding. All of our participants were capable of interpreting their own EMG recordings, leveraging them to

benefit their exercise form. We believe that these findings will inspire further research in understanding how users

access and reflect on provided feedback, a key element to creating interactive systems beneficial to our wellbeing.
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