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Body movements, from a short smile to a marathon run, are driven by muscle activity. Despite the fact that

measuring muscle activity with electromyography (EMG) is technically well established, it is highly complex

and its use in interfaces has been limited. Easy access to muscle sensing can offer new opportunities to

Human-Computer Interaction (HCI) research. Off-the-shelf sensors often only provide low-level access, hence

requiring expertise in signal processing and widening the gulf of execution for users without engineering skills.

To address this challenge, we introduce EMBody, a data-centric toolkit for EMG-based interface prototyping

and experimentation. EMBody offers multiple levels of prototyping fidelity for EMG sensing, signal processing,

and data interpretation. Our data-centric toolkit encapsulates the different data representation stages, offering

a wide range of customization opportunities to experts while also allowing non-technical designers to focus

on creating new interaction techniques. EMBody features a lightweight form factor and wireless connectivity.

Additionally, the system leverages an exploration-centered workflow by allowing rapid access to measurement

data via the accompanying software. Users define a set of motions to be recognized and interactively provide

example data points. The toolkit then handles signal processing and classification. The recognized movements

are streamed on the local network, ready to be used by interactive applications. This paper reports on how

to use EMBody and its implementation. We iteratively developed the toolkit in a series of workshops and

example applications. Users who had none or very limited knowledge of EMG could rapidly create engaging

functional prototypes, while experts appreciated the modularity of the software component allowing for a

high degree of customization. We contribute the software and hardware components of EMBody as a tool for

the research community to stimulate creative exploration of EMG systems.
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1 INTRODUCTION
Movement is becoming an increasingly important part of our interactions with computers. At

the end of the previous century, Paul Dourish envisioned how physically and socially enacted

encounters with technology will transform our everyday lives [5]. Later, Dag Svanæs [48] proposed

expanding the concept of embodiment to, inter alia, embedded perception, i.e., extending one’s

senses and awareness through technology. Embodied interaction is now profoundly present in

commercial and research systems from gestural interaction in the kitchen [31] to increased per-

ception through vibration [2]. Embodied interaction involves movement—a process where users

implicitly contract and relax their muscles to move their bodies in particular patterns. In this paper,

we investigate the means of easily allowing HCI researchers to understand our muscles in more

detail in order to design for embodied interaction.

For this purpose, we use electromyography (EMG) which is a technique to record muscular

activity by measuring the electrical field generated by the contractions of muscle fibers through

electrodes on the skin [27]. Seminal work by Saponas et al. [37] showcased the feasibility of

recognizing gestures by employing EMG around the forearm, coining the term "muscle-computer

interfaces". They proposed an interaction methodology that relied directly on recognizing muscular

activity rather than physical actuation. Apart from explicit interaction using EMG-based interfaces,

EMG excels at providing in-depth insight into a person’s muscle activation and thus human body

movements [19, 51] aiding in human activity recognition.

However, building EMG systems from scratch is difficult and requires expertise from numerous

domains such as sensing technology, signal processing, machine learning and interaction design.

Here, off-the-shelf electrical sensors
1
can only provide the first step of this process. Users need

to take care of data processing, calibration and model training. Hence, a significant amount of

time needs to be invested, adversely affecting work on designing for EMG-Based interfaces. This

constitutes an obstacle for a broader application of EMG-based interaction. Consequently, there is a

need for new EMG tools for HCI prototyping. An EMG toolkit for HCI should offer opportunities for

interaction designers, researchers, and engineers to engage with EMG-based sensing on different

levels of technical complexity.

This paper introduces our data-centric toolkit for EMG—EMBody (Figure 1), which we contribute

to the research community as an open-source tool. The toolkit aims to enable the design and

implementation of interactive artifacts, exploring the different interaction possibilities offered by

EMG and offers extensive customization support for EMG experts when conducting experiments.

Consequently, EMBody was designed to reduce authoring time and complexity, empower new
audiences and enable replication and creative exploration, cf. [22]. Practitioners are able to iterate
designs that use EMG without the need for extensive preparation, allowing for quick comparison of

alternative designs. Furthermore, we explicitly tailored EMBody for the needs of not only designers,

but also developers and engineers. EMBody offers modular code structured in an exploration-

centered data processing workflow (Figure 2). This ensures fine-grained control for experts when

needed, while also providing an accessible point of entry for non-experts into EMG-based interface

prototyping.

1
Sensors that measure electrical potential between electrodes as used by EMG.
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Fig. 1. Live classification stream in EMBody’s software application (left). Using two EMG channels, the
software predicts the current gesture (right) and provides it via a network stream for other applications to
use.

We evaluated EMBody by conducting two workshops, where we showcased the capabilities of

the toolkit and refined its design. We also present two example applications which serve to evaluate

the feasibility of the toolkit and demonstrate its suitability for rapid prototyping of physiological

user interfaces. Two use case scenarios highlight target audiences and respective workflows when

working with EMBody. We further established the viability of the final toolkit through expert

interviews, identifying requirements and challenges for EMG input prototyping.

This paper contributes the following: (1) the design and implementation of EMBody—a data-

centric toolkit for rapid EMG-based interface prototyping and experimentation, which consists of a

modular, open-source software application for interpreting electromyograms and accompanying

open-source hardware; (2) the specification of amodular data processing pipeline for EMG that offers

customization according to the requirements of a particular prototype; (3) a formative evaluation

of the toolkit in two workshops in which teams of participants successfully built prototypes of

EMG-based applications; (4) a summative evaluation of the toolkit in the form of expert interviews

and (5) two example applications that illustrate how EMBody can be effectively used to build

research prototypes for EMG-based interactions.

2 RELATEDWORK
One major driver of embodied interaction is the increasing availability of toolkits allowing users

to rapidly prototype interaction ideas. Most commonly, toolkits help ease certain steps during

this process [22], from ideation and interaction design to signal acquisition and processing to

higher level output generation, e.g. by means of machine learning. In the following, we reflect on

prominent toolkits within the HCI domain, their purposes and architecture and take a closer look

at physiological computing toolkits and electromyographic sensing.

2.1 Toolkits
Toolkits lower the entrance barrier for specific stages during the creation process of applica-

tions and artifacts [22]. Specialized toolkits, such as Makers’ Marks [39], Sauron [38], Pineal [21],

ShapeMe [53] and RetroFab [35] support technical users in working with aesthetics and form

factors. The aforementioned tools allow novice users to create 3D forms or enclosures, which

is a process which usually involves extensive knowledge and iterations using 3D software. By

abstracting from this process, e.g. through shortcuts like embedding smartwatches as computation

unit [21] or automated processes that convert physical changes to digital representations [53],
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these toolkits enable users to focus on designing applications and benefit from advances in sensor

technology and 3D modeling. Similarly, EMBody circumvents the need for novice users to be

knowledgeable in signal and EMG processing and leverages the expressive power of muscle activity

in their applications.

Other toolkits specifically address these engineering challenges, such as making sense of data

(EagleSense [54], SoD-Toolkit [44]) assisting less technically adept users to interpret sensor data

and high-level input for their applications. Taking care of data synchronization and filtering is

cumbersome and often requires expertise, especially as environments contain more and more

sensors every day. A designer for a location-aware application is only interested in a person’s exact

location and orientation (within a room). How this information is calculated is secondary and not

relevant for the application. Here, toolkits such as EagleSense [54] abstract from the technical

complexity allowing fast prototyping. EMBody offers similar features. It provides an abstraction

layer for novice users from low-level implementations of sensing and interpreting EMG data. If

desired, users of EMBody can prototype EMG-based applications without the need to ever know

anything about EMG but that it measures muscle activity.

Developing ubiquitous artifacts often involves devices that are interconnected, e.g. a sensor

and an actuator. Cross-device communication can be cumbersome and is often abstracted with

the help of protocols and toolkits. Examples include toolkits for web-based applications (XDStu-

dio [29], Panelrama [55]), tangible artifacts (Calder [23], ToyVision [24], reacTIVision [17]) or most

commonly: wearable devices (WatchConnect [15], Weave [3], Interactex [11], WDK [10]). These

toolkits showcase the importance of cross-device compatibility and properly defined interfaces to

allow for robust communication among the devices. Hence, design and implementation decisions

for EMBody are informed by these works by providing a clear interface between its hardware and

software components (see Section 3.3 and Section 3.4) as well as the user’s application. The soft-

ware component connects to the UDP stream of the EMG hardware (or any off-the-shelf electrical

potential sensor on the market, see Section 2.4 for examples), processes and interprets the EMG

data and provides a high-level gesture stream via UDP for the user’s application.

2.2 Pipeline Architectures
A common approach to toolkit architecture is the use of a pipeline-based structure. This provides

a conceptual workflow for diverse user groups and clearly communicates the toolkit’s applica-

tion domain. Toolkits might only provide one — but integral — step of this pipeline, such as

enabling laymen to work with electric muscle stimulation [33], paper electronics [36], fostering

data engagement [14] or simply enabling rapid prototyping of electronics [52].

This concept of separating individual steps of the creation process allows for a data-centric view

during development. Steps can be parallelized to increase efficiency and enable outsourcing of

complex processing to domain experts. Not being endemic to the prototyping and toolkit domain, the

concept of pipelining can be found in other areas as well, such as visualizations [7], fabrication [43],

debugging [46] and media [45]. EMBody employs this concept and defines an exploration-centered

workflow for novice and amateur users when designing for EMG-based interaction. Its modular data

processing pipeline allows the expert user to customize EMBody to a high degree while maintaining

a low entry threshold for novices.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 195. Publication date: June 2021.
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2.3 Physical Computing Toolkits
User interfaces which use physiological phenomena as input are an established topic in HCI. Given

the amount of measurable biological signals [42] which we emit, be it electrical
2
, impedance-based

3

or acoustic
4
, there is still potential for new interfaces. Yet, the possibilities for non-experts to

explore user input modalities for interactive systems are limited. Most often, expensive equipment

and prior training is required to operate systems correctly. Hence, accessing physiological input

technologies is often cumbersome and requires expert knowledge. Universally available hardware

and toolkits are a first step in this direction, as they allow non-experts to familiarize themselves

with the technology and explore its capabilities without having to commit to expensive hardware

and training.

Past work contributed tools for interaction designers who were not familiar with the employed

sensing technologies. These toolkits [9, 16, 40, 47, 49] enable designers to realize their ideas by

abstracting underlying sensor complexities and reducing the need for extensive expertise, which is

often the most significant barrier to entry in using physiological computing [6]. In line, EMBody

abstracts from underlying sensor complexities of EMG-based interaction.

Other toolkits [8, 10, 25, 26, 50] focus on a more developer-centered approach, e.g. by providing

access to low-level hardware using high-level programming languages. A key aspect that unites all

these past efforts is the focus on an iterative, design-centered approach [12] to create interactive

systems. EMBody continues this philosophy and allows for rapid prototyping of EMG-based

interfaces, by providing abstraction were required but allowing for customization were needed.

2.4 Electromyographic Sensing
Related work has identified the necessary requirements for EMG recordings, such as the physical

hardware, appropriate sampling rates and recording modes [27, 28, 37]. Suitable electrode arrange-

ments were discussed for various usage scenarios within HCI, such as finger gestures for input [37],

intimate interfaces [4], guitar tutoring [19] or augmented piano playing [18]. However, most recent

work relies on expensive hardware, often diminishing the real-world applicability of these systems.

Thus, there is a need for a lightweight apparatus that would allow for easier experimentation with

EMG-based interfaces.

Low-cost commercial EMG products include shields
5
and sensors (MyoWare

6
, BioVolt

7
) for

microcontrollers, e.g. Arduino. These devices only provide a low-level API, widening the gulf of

execution for users without engineering skills. A more accessible product, which enabled designers

to design for EMG gestures, was the Myo armband
8
, but it has been discontinued. EMBody aims to

address this gap by offering rapid access to EMG data with its dedicated software, taking care of

data processing and interpretation. Hence, users can rely on a robust high-level gesture stream for

their applications.

3 THE EMBODY TOOLKIT
As a consequence, the need for an EMG toolkit that would enable easy exploration emerges. We

began our work with an initial set of requirements motivated by Ledo et al.’s [22] definition of a

toolkit:

2
muscle and brain activity

3
skin resistance

4
respiration and heart flow

5
https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/open-source-hardware

6
http://www.advancertechnologies.com/p/myoware.html

7
https://infusionsystems.com/catalog/product_info.php/products_id/198

8
https://support.getmyo.com/hc/en-us
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"[Toolkits are] generative platforms designed to create new interactive artifacts, provide easy access
to complex algorithms, enable fast prototyping of software and hardware interfaces, and/or enable
creative exploration of design spaces." [22]

Especially in the domain of physiological computing, reducing the need for extensive expertise

is essential. Fairclough [6] called for easy data acquisition and abstraction from technical details.

Similarly, seminal work by Schilit et al. [41] on context-aware computing highlighted the importance

of a person’s environment for interactive applications. As a consequence, such toolkits need to be

mobile and effectively support the creative process. Last but not least, toolkits are to “empower

new audience” [22]. In this work, we explicitly focus on including a wide range of professions as

potential user groups.

Consequently, we strongly base our design goals for EMBody on the five goals aggregated by

Ledo et al. [22]. We further take related work from past toolkit research and especially physiological

sensing into account (Section 2). Based on those past works, we derive four requirements for

EMG-based prototyping and experimentation. In this work, we iteratively refined, addressed and

evaluated the requirements in two workshops (Section 4.1), through developing sample applications

(Section 4.2) and conducting expert interviews (Section 5).

The following section describes the final set of requirements for EMG-based prototyping and

experimentation. We detail the corresponding exploration-centered workflow of EMBody as well its

software and hardware components, highlighting possible extension points for technically skilled

users. All resources needed to build, use and modify EMBody are open-source and are available on

github
9
. Finally, a closer look at the different workflows possible with EMBody is provided through

two use case scenarios in Section 3.6.

3.1 Requirements for EMG-Based Prototyping and Experimentation
Throughout the development process of EMBody, we identified four main requirements for EMG-

based prototyping and experimentation. We specifically address the needs of a wider range of

professions, who could potentially use EMG, for our toolkit.

Mobility. Mobility is a key aspect to facilitate prototyping and exploration not only in con-

strained lab environment, but to allow for in-the-field exploration. EMBody offers a low-power

and lightweight apparatus which is mobile and can be carried by the user. This property enables

straightforward in-situ exploration of interaction scenarios ensuring high external validity. The

need for highly mobile EMG-based interfaces was exemplified by past work in HCI, which advocated

using EMG for interactions on the go [4].

Data Acquisition. Data Acquisition often produces technical difficulties. Off-the-shelf sensor

products rarely provide an abstraction layer for this process. Most commonly data has to be directly

read via the analog port of a microcontroller. To facilitate rapid prototyping, data acquisition needs

to be reliable and possible from a variety of devices. In the final version of EMBody, data acquisition

is moderated using the UDP protocol over an existing WiFi connection. This allows experts to

use custom hardware to communicate with EMBody’s software application, by adhering to the

protocol (Section 3.3). The standard hardware already provides a walk-through for users to connect

to existing WiFi connections for initial setup.

Additionally, EMBody’s hardware provides up to six sensing channels without further modifica-

tions. Off-the-shelf products often need to be extended, requiring additional electronics develop-

ment
10
. For EMBody, selecting individual channels is handled by the software application.

9
https://github.com/HCUM/embody.

10
E.g. stacking multiple shields for the Olimex board or connecting multiple MyoWare sensors.
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Connect electrodes
and select channels

Define gestures
and calibrate

Train model and
start live classifier

Connect to
UDP stream

Fig. 2. Workflow when designing with EMBody.

Abstraction Layer. To tailor for novices in EMG sensing, the toolkit needs to protect this user

group from unnecessary technical details including signal processing and data interpretation. For

this purpose, EMBody realizes an exploration-centered workflow (Section 3.2) that guides the user

through a total of four steps from an initial idea to a final working prototype. Apart from deciding

on the electrode configuration (location and channels), which is supported through a manual
11
, the

user does not need to have any expertise in signal processing and data interpretation. EMBody

features a predefined data processing pipeline including a set of filters and algorithms that take

care of data interpretation, allowing the user to focus on exploration and interaction design.

Modular Structure. Conversely, experts want to have a fine level of control over the data processing
pipeline. Consequently, EMBody offers gradual levels of fidelity through its modular structure.

Every part of the workflow (Section 3.2) can be customized and adjusted to the user’s needs. For

an elaborate experiment, researchers might want to adjust the data pipeline by interchanging

the classification algorithm or calculating different features. The accompanying software offers

convenient extension points for this purpose, exposing various stages throughout the processing

pipeline.

3.2 An Exploration-Centered Workflow
EMBody uses an exploration-centered workflow (Figure 2) guiding users from a first idea to a final

prototype. This allows users to readily start exploring suitable interaction scenarios without the

need for further configuration. The data-centric pipeline provides different views of the same EMG

data, such as raw and filtered data, as well as generated features and final predictions. The following

section introduces this workflow in detail while highlighting extension points for expert users.

3.2.1 Connect Electrodes and Select Channels. The standard firmware on EMBody’s hardware

offers a captive portal when connecting to its Wi-Fi network. The portal allows users to configure

their preferred connection settings. Once configured, the prototype readily sends recorded data via

the network. The system can be powered by any portable power source, such as a small powerbank,

allowing continuous operation for multiple days.
12
Data is transmitted wirelessly without the need

for additional cables apart from the electrode connections. Setting up the prototype and placing

electrodes (Figure 3) is described in the enclosed manual
11
.

Our toolkit allows recording up to six channels with a standard sampling rate of 250𝐻𝑧 and

provides sensing and recognition data via a UDP stream broadcast over the network. This enables

users to track several muscles (groups) at once and recognize complex motor tasks. For technically

skilled users, the firmware can be adjusted to their needs, offering a much higher sampling rate.

Network capabilities are the bounding factor. Additionally, the software implements sanity checks

on the received data, such as estimating sampling rate and tracking package loss during critical

operations and informs the user about possible ways to solve these issues.

The EMBody live view (Figure 4) allows simultaneous tracking of up to six channels and helps

the user identify faulty connections. This also allows refining electrode placement when signal

11
Available at https://github.com/HCUM/embody/tree/master/manual.

12
See Section 3.3 for performance details.
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Fig. 3. EMBody works with a variety of electrodes. Here, they are affixed with straps to the forearm. First,
the ground electrode is placed (left) on a location with little muscle fiber, e.g. close to the elbow. Afterwards,
the sensing electrodes are placed on the muscle belly (right).

Fig. 4. Checking the EMG signal in the live view using different views of the EMG data. Filtered signal on the
left; generated RMS features on the right. See Section 3.4 for algorithm details.

quality is low. The manual provides a set of guidelines on how to place electrodes to minimize

noise. This first step helps users familiarize themselves with the EMG signal and discover how it

reacts to their movements.

3.2.2 Define Gestures and Calibrate. Once electrode placement is completed, users provide a set

of movements that they wish to recognize. EMBody will guide the user through this calibration

process by instructing the user to perform the respective movements while collecting sample data

for each movement (Figure 5). Additionally, EMBody verifies that the sampling rate is sufficient for

further filtering steps and monitors potential package loss. If irregularities are detected, the user is

advised to repeat the calibration, check for connection issues or redo the electrode setup.

During calibration, EMBody synchronizes the specified movements (the calibration labels) and

incoming EMG data samples. EMBody collects more data samples for the NULL_CLASS, allowing
the user to present motions that should not be recognized. This increases the robustness of the

classifier. After completion, the recorded data is filtered and saved. An updated overview over all

collected calibration data (duration per label) is displayed. For post-hoc analysis, EMBody offers an

export function.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 195. Publication date: June 2021.
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Fig. 5. EMBody calibrating for a gesture labeled LEFT. Corresponding gesture by the user (left arm) on the
right.

UDP stream

Fig. 6. Live view with live classification. Note that the classification is also streamed via UDP.

3.2.3 Train Model and Start Live Classifier. After completing a full calibration, the user is able to

train a classificationmodel using the provided discriminativemethod using a support vectormachine

(SVM). Internally, EMBody calculates Root-mean-square-based (RMS) features after filtering the

data ( [19, 37]). Depending on the selected amount of channels, pair-wise ratios between channels

are calculated. This approach provides an indication of relative locality for the classifier. After

generating the appropriate features, the software trains an SVM and evaluates the model using

10-fold cross validation on the calibration data.

While the significance of this metric is limited to the recorded calibration data, it supports the

user in assessing whether the calibration movements are sufficiently distinct with respect to their

recorded muscular activity. Low values
13
indicate that the chosen gestures are too similar. Thus,

the user is advised to modify their gestures (backtrack in the workflow) or to provide additional

sensing channels which may help distinguish the gestures (restart with electrode setup). This way,

impractical electrode configurations and gesture sets can be identified quickly.

The standard feature generation and classification method of EMBody works well for short

explicit EMG-based input. To recognize longermovements
14
, othermachine learning approaches, e.g.

regression or correlation-based methods might be better suited. The modular structure of EMBody

allows users to substitute and extend the classification module, providing their own training and

13
Values lower than 80% might already be impractical for some applications.

14
More than several seconds.
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prediction routines. If the user decides to use the method as implemented, no knowledge about

classifying EMG data is needed to use EMBody.

After starting live classification, EMBody switches to the live view (Figure 6) and continuously

processes the incoming EMG data, generates respective features and provides a new prediction
15

every 80𝑚𝑠 .

3.2.4 Connect to UDP Stream. Live classification is displayed within the software and additionally

provided as a network stream (UDP or LSL
16
). Whenever a new prediction is available, EMBody

broadcasts the appropriate gesture label onto the network, which can then be accessed by any

other application in the network.

3.3 Hardware
Our toolkit includes a versatile hardware system, capable of measuring up to six EMG signals in

parallel and delivering them wirelessly over WiFi (Figure 7). The device senses the muscular activity

primarily using dry electrodes, but is capable of working with other electrode types. Compatible

electrodes must facilitate a bipolar measurement technique: apart from one reference electrode,

two sensing electrodes are used to minimize the impact of noise artifacts. These electrical signals

are individually processed by an analog instrumental amplifier and quantified by an Analog-Digital

Converter (ADC). Finally, a microcontroller packages the data into UDP packets and transmits

them using a WiFi antenna.

Fig. 7. Diagram of the EMG system: The system senses muscular activity with electrodes. These signals are
amplified and sent in UDP packets over WiFi.

We based our design on existing circuits, aiming for compactness, wearability, and flexibility,

while ensuring low noise levels and adequate data output. The instrumental amplifiers are an

adaptation of an existing design
17
, based on the INA2321

18
, a low-power and low-cost CMOS

amplifier. We used a board based on the ESP32 microcontroller, which is a low-cost and low-power

system on a chip with integratedWiFi. Given the pin layout and the usage of WiFi, the ESP32 offers a

total of six remaining ADC channels with a 12 bit resolution each, thus converting the output signals

of the instrumental amplifiers to integer values from zero to 4095. Power consumption for the

ESP32 with active radio transmission is approximately 240𝑚𝐴19
, given maximum signal strength.

Using a 5200𝑚𝐴ℎ powerbank yields up to 22ℎ of continuous operation (the power consumption of

the amplifier is negligible).

During operation, the microcontroller polls all six channels and packs the measurements into

frames of six values including a timestamp and broadcasts them to the connected network
20
. For

15
Based on the provided gesture set.

16
Lab streaming layer: https://github.com/sccn/labstreaminglayer

17
https://github.com/BigCorvus/2-Channel-Biopotential-Amp

18
http://www.ti.com/product/INA2321

19
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

20
Communication protocol: "timestamp;CH_x;CH_x;..."
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Fig. 8. EMBody’s hardware prototype showing the six audio jacks on the front to connect electrodes and the
microcontroller in the middle. The three amplifiers (each supporting two channels) are placed underneath
the microcontroller. A lid (removed in this picture) is also provided.

EMG purposes, a sampling rate of 250𝐻𝑧 is sufficient in most cases
21
. We provide all firmware files,

allowing users to customize it to their needs.

To ensure portability and versatility, the system is mounted in a 3D-printed case with a wallet-like

form factor and powered via the ESP32’s USB port. Both powering the device and connecting it to

a computer can be done with a micro-USB cable. Further, the inputs of the instrumental amplifiers

are connected to 3.5𝑚𝑚 stereo audio jacks. This simplifies the management of the electrode cables

and allows to adapt their number to specific requirements. Figure 8 depicts the hardware inside the

case.

While we gladly provide the hardware upon request, the complete system can be built from our

custom circuit design schematics and layouts which are available via the repository. Additionally,

we provide assembly instructions, including a parts list. The available firmware and 3D design files

complement the hardware resources.

3.4 Software
The EMBody software is a PC application developed in Python on Windows. It does not use native

libraries, allowing it to be run on macOS and Linux as well. It follows a modular structure governed

by EMBody’s workflow. While it has been developed to be used with EMBody’s hardware prototype

in mind, the software can be used with any kind of sensor that uses the communication protocol
20
.

New research probes such as PhysioSkin [30] and PolySense [13] are promising alternatives that

are potentially compatible with our system. The complete source code is open-source and can

be readily extended, both in terms of additional GUI elements (making use of EMBody’s stream

handling) and logic components (extending the data processing pipeline). The following section

describes key components and highlights possibilities for extensions.

3.4.1 Data Processing Pipeline. Data filtering, processing and feature generation is encapsulated

in EMBody’s ClassificationManager. The following methods are of particular interest. Figure 9

shows the call hierarchy and information flow during the calibration and live classification phases.

21
Proposed filters by related work [19, 37] make higher sampling rates unnecessary when using the standard pipeline of

EMBody (see Section 3.4 for details).
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ClassificationManager

calibrationData
onRawCalibrationDataAvailable

1. filters recorded EMG data

2. populates internal data structure

classifier

trainClassifierModel

1. generates RMS features

2. fits SVM classifier model

live	EMG	data

raw	calibration	data

makePrediction

1. filters live EMG data

2. generates RMS features for live data

3. predicts movements based on classifier

preprocessData

applies filter to recorded data

Calibration

Live
Classification

Fig. 9. Classification pipeline within ClassificationManager. Note the different flows for the calibration
and live classification phases.

onRawCalibrationDataAvailable. After EMBody finishes a calibration run, it calls the method

onRawCalibrationDataAvailable and passes all recorded samples and associated labels (see the

source code for details). This method implements preprocessing steps (using preprocessData) and
populates the internal data structure.

preprocessData. Closely following related work [19, 27, 37], this method applies a bandpass

filter between 2𝐻𝑧 and 100𝐻𝑧, attenuating long-term drifts, the DC offset and high-frequency noise

as well as a bandstop filter between 49𝐻𝑧 and 51𝐻𝑧 in order to remove power line interference.

The method returns a dataframe linking data samples to their respective class, i.e. the calibration

labels. Additionally, data is grouped per calibration run
22
.

trainClassifierModel. Implementing standard [19, 37] EMG features, this method provides

epoched RMS features and their pair-wise ratios between channels. These values can be interpreted

as a proxy for the intensity of muscle activity as the amplitude of the EMG signal increases when

the muscular activity increases [27]. RMS is calculated using a convolutional approach and defined

as

𝑥𝑅𝑀𝑆 =

√︂
1

𝑛
(𝑥2

1
+ 𝑥2

2
+ ... + 𝑥2

𝑛).

One important parameter for calculating RMS-based features is the window size 𝑛. It represents

a trade-off between classification accuracy and latency, i.e. the time between acquiring EMG data

and its prediction. Small windows allow for little latency, but are problematic when recognizing

longer-lasting movements. Preliminary experiments confirmed that setting the window size to

𝑛 = 20 yielded a good trade-off. Given a standard sampling rate of 250𝐻𝑧, this corresponds to a

classification latency of 80𝑚𝑠 . These are the standard values in EMBody which can be modified

when required.

22
The NULL_CASS may be recorded multiple times during calibration. Grouping ensures that those samples are processed

separately.
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EMBody implements a support vector classification with a radial basis function kernel
23

us-

ing scikit-learn
24
. Features are scaled to unit variance and zero mean before fitting a model. A

subsequent 10-fold cross validation provides a first indication of the model accuracy.

Overwriting the trainClassifierModel method allows the user to specify their own feature

generation pipeline (cf. [34] for an overview). They can provide custom classification methods.

When using sckit-learn, the user may still make use of the live prediction methods. Implementing

other libraries, e.g. a correlation analysis, requires the user to also adapt makePrediction.

makePrediction. During live classification, the previously trained model is used to predict cali-

bration labels for incoming data. Whenever a new prediction is requested
25
, this method performs

the preprocessing and feature generation steps and provides the respective predictions. A voting

(mode-based) ensures a robust prediction, hence yielding one prediction per call. Alternatively, a

list of predictions is also provided. Users may choose to work on the raw prediction data directly,

or accumulate incoming data, e.g. for activity recognition, by overwriting this method. Listing 1

provides an excerpt highlighting key steps and possible extensions points.

def makePrediction(self, data):
...
#applying filtering steps (Data is in df), change here for individual filters
apply_bandpass_filter(df, 2.0, self.currentSamplingRate / 2.0 - 1.0, self.currentSamplingRate)
apply_bandstop_filter(df, 49.0, 51.0, self.currentSamplingRate)

#constructing data matrix
X = pd.DataFrame ()
for column in df.columns:

#add custom features here
X['rms' + str(column )] = rms_convolution(df[column], self.windowSize)

#automatically add pairwise ratios of all features
addPairwiseRatios(X)

#predict based on generated features in X using pre -trained classifier clf
try:

X = self.scaler.transform(X[X.columns ])
prediction = self.clf.predict(X)

#EMBody uses voted predictions by default (over 80ms of data)
#return prediction to get a result for each sample within data
voted_prediction = mode(prediction )[0][0]
self.currentPrediction = str(voted_prediction)
return self.currentPrediction , prediction

except ValueError:
self.currentPrediction = None
return None , []

Listing 1. Excerpt of makePrediction highlighting key steps.

3.4.2 Stream Handling. In EMBody, the class StreamHandler handles the incoming UDP stream

from the EMG device as well as the outgoing stream of predictions. Together with the GUI elements,

this class implements an observer pattern to inform and update the GUI elements. To that end,

StreamHandler implements StreamEventCreator, allowing it to trigger stream events when

required to inform appropriate views. Users who extend this class, or StreamEventCreator, are
encouraged to deliver GUI updates by notifying their observers.

3.4.3 GUI Elements. Similarly, existing GUI elements receive updates by listening to incoming

stream events, by implementing StreamEventListener. EMBody provides the following functional

views
26
:

23𝐶 = 1.0, 𝛾 = 𝑠𝑐𝑎𝑙𝑒
24
https://scikit-learn.org/stable/index.html

25
By default, every window size (80𝑚𝑠).

26
Please consult the manual for details at https://github.com/HCUM/embody/tree/master/manual.
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• Setup: Connecting to the prototype, checking sampling rate and selecting channels.

• Calibration: Specifying (save/load) calibration labels, running calibrations and training

classifier models; exporting complete calibration data (filtered).

• Live view: Live feed of incoming EMG data grouped by channel, additional live predictions

if classifier is available.

A possible extension is including a new view, showing a live auto-correlation of the signal for

different lag sizes. For this purpose, one would want to connect to the live feed of EMG data (Live

view) and subclass StreamHandler accordingly to provide custom stream events, after processing

the incoming data. A new view may listen for events and plot data when prompted. A view-less

listener may simply save processed data to a file.

3.5 Technical Limitations
EMBody is custom-built and tailored for prototyping purposes. As such, it has not been designed

as a precise measuring unit, but to support EMG-based interaction in prototypes. The toolkit is a

trade-off between signal accuracy and accessibility for non-expert practitioners. Consequently, we

note some important limitations of EMBody.

First, EMBody is not an exact measurement device. Due to its open design, it is especially

vulnerable to artifacts, such as cable movements or electromagnetic noise. While the implemented

filtering steps mitigate these effects, proper setup routines are still vital. Similarly, since EMBody

does not provide adjustable gain settings, it represents a trade-off between being able to recognize

small, fine-grained motions and extensive movements. The size of the electrodes particularly

influences the resulting signal. Hence, users are encouraged to choose electrodes according to the

desired usage scenario.

Second, our toolkit works best for isometric muscle activation, i.e. continuous muscle activity

without visible movement [27]. Isotonic muscle contraction can be problematic, e.g. recognizing

movements over a period of multiple seconds. Here, correlation based on previously calibrated

templates might be more suitable. The modular structure of the accompanying software allows for

adapting it for that purpose.

Third, for more complex movements, one might require more channels than EMBody can

accommodate. Even using up to six channels requires extensive cable management. As EMBody

was designed to allow for using all muscles, we do not include cable arrangements in the system.

Custom cable solutions can help to alleviate this issue by combining multiple leads.

Finally, despite being a mobile prototype, EMBody still requires an active Wi-Fi connection for

broadcasting. Subsequently, a mobile application on a smartphone providing an access point and

data processing capabilities is needed for true mobility.

3.6 Target Audience
EMBody is tailored for awider audience, supporting interaction designers, researchers and engineers.

Consequently, EMBody offers different levels of depth and complexity in signal processing and

classification. In the following, we outline two typical use case scenarios to showcase the diverse

needs of EMBody’s users. The first scenario describes how a VR interaction designer uses EMBody

to realize dynamic interaction in a sword-fighting game. The latter scenario deals with a researcher

collecting electromyograms throughout an experiment for prosthesis control.

3.6.1 Scenario 1: Using EMG Input in VR Prototypes. An interface designer wants to extend their

VR application using the standard workflow (Figure 2). They want to sense how strongly the user

is gripping the VR controller. The designer decides to include two different grip modes, normal

and hard, in their sword fighting game. Thus, grip strength has a direct impact on the sword’s
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momentum, influencing the player’s ability to attack and parry. This scenario is an example for

EMBody’s potential user group composed of interaction designers and application developers. Their

requirements include easy access to interpreted EMG data, while allowing for fast iterations among

possible gestures. The underlying processing and interpretation of the EMG data is secondary and

not of interest to this user group.

The designer first needs to find a suitable electrode location. A pragmatic approach to this

question is to observe one’s own muscle movements and place a pair of electrodes on the involved

muscles. A tight grip mostly activates muscles in the forearm, hence the designer decides to place

electrodes on the underside of the respective forearm (Figure 3). Afterwards, they complete the

setup by connecting the electrodes to the prototype as depicted in the manual
27
. The designer

specifies the two recording channels (one for each forearm) and checks the signal via the live view.

They observe whether their movements trigger changes in the displayed signal as illustrated in

Figure 4.

In his application, the designer is only interested in detecting a tight grip with either hand. Thus,

they provide the labels: LEFT and RIGHT and create an empty calibration. EMBody automatically

adds a NULL_CLASS, which represents any other motion. The designer starts the calibration process

and provides a tight hand grip when prompted (Figure 5), making sure to relax and perform other

relevant sword swinging motions in between.

EMBody reports an average accuracy of 95.6%. If need be, EMBody provides them with the means

to reiterate the gesture calibration using a different electrode configuration or gesture labeling.

Here, the designer is satisfied with the result and starts the live classification. EMBody now switches

to the live view (Figure 6) and continuously processes the incoming EMG data, predicting if the

user tightens his grip for either hand. The designer incorporates the live classification into their

VR application by accessing the UDP network stream in Unity. They affix the prototype on the

belt of the user and put the powerbank in their trouser pocket. As EMBody continues to relay live

classifications of grip force, the designer can focus on tweaking parameters relevant for the game,

e.g., how much stronger a strike should be when the sword is tightly gripped.

3.6.2 Scenario 2: Designing Experiments for EMG-based Input. A researcher familiar with Elec-

tromyography recording wants to use EMBody to find a suitable set of classification features to

recognize ten different hand movements when using up to six channels connected to the fore-

arm. Contrary to the designer scenario, this user group includes signal processing experts and

researchers as well as engineers and machine learning developers. They require close control over

the data processing pipeline allowing them to customize vital steps if need be. Rapid prototyping

of different designs is secondary. This user group focuses on signal accuracy and body physiology,

requiring detailed views of the recorded data.

Since flexion and abduction of the wrist as well as controlling finger movements involved various

muscles in the forearm, the researcher decides to place the electrodes in two rings around the

forearm (one closer to the elbow, one near the wrist) to capture most of the involved muscles.

This also helps them to generalize their approach more easily, as exact knowledge of the forearm

anatomy is thus not required to place electrodes. Contrary to scenario 1, the researcher makes

use of the unipolar measurement technique
28
as shown in Figure 10. They use a custom hardware

device to collect the data and send a UDP stream adhering to EMBody protocol to deliver the data.

The researcher connects their UDP stream to EMBody and selects all recording channels. In

the live view (Figure 4), they observe whether their movements trigger changes in the displayed

27
Available at https://github.com/HCUM/embody/tree/master/manual.

28
one GND/REF electrode each, several measurement electrodes.
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Fig. 10. Unipolar measurement with six sensing electrodes (white, two on backside) and one reference
electrode (blue). Ground electrode (black) serves for noise reduction only.

signal and initially assess the viability of the current electrode configuration by comparing dif-

ferent channels and respective signals. The researcher notes possible improvements regarding

the configuration but decides to do an initial recording. They define the ten gestures and start a

complete calibration process. Using EMBody’s save functionality, the researcher exports a dataset

with annotated ground truth from the calibration. They repeat the process with two different

electrode configurations and fine tune their classification algorithm and extracted features in their

own work environment. Here, EMBody provides this user group with easy access to annotated

data streams for research purposes.

After establishing a sufficient model, the researcher incorporates their classification algorithm

into EMBody by extending its ClassificationManager. Henceforth, EMBody will use the tailored

algorithm to process incoming data, taking care of signal acquisition and routing. For the actual

experiment, the researcher attaches the electrodes in the optimal configuration for every participant

and executes the calibration procedure. The researcher connects to EMBody live classification via

UDP and relays the current prediction to the prosthesis. They record accuracy metrics in a manual

task and questionnaire responses for later analysis.

4 FORMATIVE EVALUATION
Organizing two workshops which featured rapid prototyping of EMG interfaces was a key element

in designing and implementing EMBody. This way we assured that the final version of our sys-

tem reflected the needs of the HCI community. In this section, we illustrate how we established

requirements and challenges for EMBody during the workshops. We used formative evaluation to

understand the qualities necessary for EMBody to enable exploring EMG-based systems.

4.1 Workshops: Initial Feedback and Refining Requirements
We organized two experimental workshops titled “Using Physiological Sensing for Embodied

Interaction” for university students in HCI. Thirty-one and 36 students, including bachelor, master,

and Ph.D. students participated in the workshops. Figure 11 shows one workshop location during

the hands-on sessions. Participants learned about physiological sensing (mainly EMG) and created

their own EMG-controlled devices in hands-on tutorials. The workshops provided an opportunity to

verify whether an initial version of the toolkit offered easy entry for EMG-based interface design. It

included a hardware prototype using the Bluetooth protocol to transmit data and a set of processing
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Fig. 11. Hands-on session during one of the workshops.

script to receive the data. After being presented with the system and its functionality, participants

were instructed to first define their own ideas (e.g. an EMG-controlled musical instrument) and

formulate a concept for their prototype. Over the course of the two-day workshops, participants

successfully developed fully functional prototypes, which they evaluated in small user studies.

Finally, each student team presented their work in front of the students and teachers.

The goal of the workshops was to evaluate the suitability of the toolkit for rapid prototyping

and identify possible design flaws. Every participant group was able to successfully create a fully

functional prototype system that employed EMG as an input modality. Examples
29
included:

• SmartSpine: helping the user to correctly lift heavy loads by placing electrodes on the legs

and back.

• Flappy Bird: controlling the game Flappy Bird via flapping one’s arms (electrodes on the

arms).

• Muscle PIN : biometric authentication via muscle flex patterns (electrodes on the forearm).

• Dance Avatar : a puppet mimicking the user’s every move; electrodes on arms and legs.

• Lunar Lander : a collaborative game where players control a lunar lander probe. Two players

steer the probe via electrodes on the forearm.

• Canoeing: a four-player game where teams of two compete in a canoe competition. Each

team needs to maintain a consistent paddling motion (electrodes on the forearm.)

The breath of ideas generated in the workshops as well as the fact that students at varying levels of

HCI and technical competence were able to rapidly build functional systems show that the initial

toolkit effectively supported rapid prototyping. Most importantly, the workshops enabled us to

verify if the toolkit fulfilled the requirements and what parts of EMBody needed improvement. The

prototypes were highly mobile—workshop participants built prototypes using different muscles

and in different location. Workshop attendees were also able to effectively perform data acquisition
as they all successfully connected muscle sensing to application input. All the members of the

29
Selected examples are shown in EMBody’s video at https://github.com/HCUM/embody.
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diverse audience in the workshops were actively involved in building the prototype, thus showing

that the toolkit offered an abstraction level that was effectively used by the participants. Finally,

participants with expert signal processing knowledge were able to add advanced computation to

their prototypes by taking advantage of the toolkit’s modularity.
The workshops also enabled us to identify key areas for improvement for EMBody. First, some

participants experienced issues with Bluetooth connectivity. To alleviate that issue, we redesigned

the toolkit to rely solely on the WiFi connection. Second, we observed that the workshop par-

ticipants spent a significant part of their prototyping time designing algorithms for recognizing

movements. This was especially true for those who did not have extensive signal processing expe-

rience. Consequently, we decided that EMBody should include pre-defined gesture detection tools

that could be customized by expert user. The updated software package includes a default classifier

that can be used with no knowledge of EMG gesture recognition.

4.2 Sample Applications
The next step in our process was to develop systems that would enable experimental studies. To

demonstrate EMBody’s versatility and verify the correctness of the workflow, we built several

interactive systems which used EMG input for different purposes.

4.2.1 Choosing the Right Input Control for EMG. To better understand a user’s perception of

their own muscle control, we endeavored to investigate how users perceive different input control

mappings in a steering law experiment. The goal was to keep a moving ball as close as possible to

a predefined trajectory (Figure 12). Two EMG channels were used, each controlling one horizontal

direction, while the ball moved upwards on a screen. Electrodes were placed on the respective

forearm. The study apparatus is depicted in Figure 12.

Fig. 12. Study stimulus (left) and electrode placement (right) for EMG input controls.

Here, EMBody allowed us to test a series of electrode locations and suitable muscle groups

as well as various input mapping functions in a rapid fashion for a final study. We conducted a

within-subject experiment using three different modalities to control the ball: a joystick as baseline

and two EMG-based controls (position and rate control). While position control directly changed

the ball’s position based on the recorded power of muscle activation (controlling its velocity), rate

control influenced the acceleration in either direction. Different ball speeds were introduced as an

additional independent variable.

We measured the average deviation from the given line as well as participants’ responses to our

questionnaire about ease of use, their perceived fatigue and their feeling of control
30
.

30
All on a visual-analog scale from 0 to 100.
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Fig. 13. Averaged responses for our questionnaires (ease of use, fatigue, feeling of control) given modality.
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Fig. 14. Average Deviation (L2 norm) in pixels given different speeds and modalities.

Figure 13 illustrates the questionnaire responses w.r.t. the modality. While the Joystick clearly

outperformed the EMG-based controls in terms of control and fatigue (lower is better), EMG-based

inputs were preferred in terms of ease of use. In a preliminary evaluation (one-way ANOVA and

Tukey posthoc comparisons) of ten participants (8𝑚/2𝑓 ), we found that the feeling of control via

the joystick was significantly higher (𝐹 (2, 27) = 7.7, 𝑝 < 0.01) than for both EMG-based controls.

Additionally, rate control was significantly (𝐹 (2, 27) = 3.4, 𝑝 < 0.05) more fatiguing than the

joystick.

The superior control of the joystick baseline can be seen in Figure 14 (significantly different to

position and rate control). We observed a significant linear effect
31
of ball speed for all modalities.

31
Linear mixed model analysis. Fixed: modality, speed. Random: trialnumber, participant.
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Fig. 15. Study apparatus for the fitness exercise. The monitor displays visual feedback during the exercise.

There was no interaction effect between speed and modality. Additionally, position control did not

significantly outperform rate control for EMG-based input.

While EMG-based input was lacking in control for steering tasks, there was a tendency for

improved ease of use. In line with this finding, we believe that EMG is better suited as a secondary

input modality, e.g. for hands-free interaction. Here, EMBody supports designers in prototyping

the right placement for electrodes while ensuring adequate control.

4.2.2 Taking a Look Inside. Besides explicit interaction, EMBody allows exploring EMG for implicit

interaction. Here, we evaluated to what degree insights into one’s own muscle activation can be

beneficial in learning motor tasks. To that end, we built an assistive system for a fitness exercise

(bicep curl), which provided visual and audio feedback for two muscle groups. The study apparatus,

showing one of the feedback options in the background, is shown in Figure 15. Here, we used

EMBody to quickly connect recognized muscle motions to alternative feedback modalities via the

UDP stream. This allowed us to focus on possible designs for the feedback.

We designed alternatives for visual feedback: abstract (bars indicating muscle power) and raw (a

time series plot which showed a smoothed EMG signal). Auditory Feedback included sounds for

correct and incorrect execution, which was detected using an adapted version of EMBody’s machine

learning algorithm. Here, EMBody allowed us to evaluate several feedback options for a specific

task, while relying on the same mobile signal acquisition system. Changing feedback was easily

possible and only depended on how we wanted to present the muscular activity. Preliminary results

showed that an abstract representation of muscle activity was better understood by users. Expert

users approved of using auditory feedback to control for their movements. Interestingly, despite its

low-cost components, the system was able to outperform an expert reviewer (a professional fitness

coach) during the performed fitness exercise, detecting incorrect execution in nearly all cases. This

showcases not only the potential of physiological sensing for interaction, but, most importantly,

assures that our low-cost toolkit provides adequate signal-to-noise ratio for prototyping purposes.
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5 SUMMATIVE EVALUATION
During the development process, we iteratively refined EMBody to address upcoming challenges.

In line with Ledo et al. [22] who suggested multiple evaluation strategies and goals for HCI toolkits,

we first evaluated an instance of the usage of EMBody in workshops, as described above. In order

to establish the capabilities of the final version of the prototype, we further evaluated the toolkit

through a series of expert interviews.

5.1 Participants
We recruited five HCI experts who participated in at least one of our workshops. All participants

were male and aged 𝑥 = 27.6𝑦. No remuneration was provided for the interview. Table 1 details the

profiles of the participants. We chose interviewees so that they would be member of the primary

target audience of the toolkit—HCI researchers with varying level of technical knowledge and

different research foci. The participants had varying levels of experience with prototyping. Apart

from one, all interviewees were prototyping at least once a month involving microcontrollers,

AR/VR applications and small electronics projects.

ID Age Gender Profession Areas of expertise Prot. experience Prot. frequency

P1 31 male PhD student UX design, software development 7 Once a month

P2 29 male Postdoc HCI, sports, human physiology 7 Twice a week

P3 30 male PhD student HCI, augmented/virtual reality 6 Once a month

P4 22 male Student HCI, participatory design 5 Once a week

P5 26 male PhD student Machine learning, NLP 3 Once a year

Table 1. Participant profiles in the interviews, including their areas of expertise as well as prototyping
experience (7-item likert scale) and frequency.

5.2 Interview script
At the start of the interview, we asked the participants about their experience in the workshops,

specifically what challenges they faces while realizing their project. Afterwards, participants

watched a video of the final version of EMBody
32
. We then inquired about the participants’ initial

perceptions of EMBody and its exploration-centered workflow. Next, we asked about the challenges

and opportunities they saw in using the toolkit. Finally, we discussed possible applications of

EMBody in the participants’ research work.

5.3 Analysis
All five interviews were recorded (total duration 1 : 42ℎ) and transcribed verbatim. We wanted to

conduct a focused analysis of a moderate volume of qualitative data. Consequently, we used the

pragmatic approach to thematic analysis [1]. We established an initial coding tree by open-coding

a representative 20% of the material by two researchers and aligning the codes. The rest of the

interviews were then split between the coders and analyzed by a single researcher. In a final session,

we refined codes and identified recurring themes in the data.

32
Available at https://github.com/HCUM/embody.
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5.4 Results
The final discussion resulted in the following high-level themes: Gradual Levels of Fidelity,

Target Audiences, Transparency and Challenges in Working with EMG. We further detail

the contents of each theme in the following.

5.4.1 Gradual Levels of Fidelity. EMBody aims to support a wide range of user groups, from

novices to experts (Section 3). In our interviews, participants appreciated the simplicity of starting

to work with EMG-based interaction as the toolkit allowed them for focus on designing gesture

and movements without the need to bother with signal interpretation:

I could simply just start with coding my interaction [...] as a designer don’t have to deal with the
signal and all.(P2)

This new approach would also enable a bit more non-technical people who actually don’t care
about a signal, just about the application to get into EMGs sensing. For example, people from non-
computational fields that just want to try out something, I think, for them it’s really more accessible
then. (P5)

It also became evident that experts benefited from themodular data processing pipeline. Moreover,

they would appreciate an in-depth classification report already in EMBody’s base version:

I think it’s important to be able to get the raw data, maybe someone wants to do some work on
machine-learning algorithm on it and do something else with this data. I think it’s important to
have most or all data and have this abstraction. Different people can use it differently, depending on
the flow. (P3)

I want it to be as accurate as possible, so I would want to have access to everything to be able to
customize everything. (P4)

5.4.2 Target Audiences. Participants remarked on the suitability of EMBody for different audiences,

such as people with no experience in computer science. The exploration-centered workflow allowed

them to quickly grasp the idea of EMG-based interaction and supported an easy entry:

What would they have to do? Let’s say the box itself, the board itself would be nicely presented in a
nice cover. You just have to plug it in. Easy, that’s something you do all the time. Connect it to wifi,
so that probably you just immediately opens the wifi and you can connect it from the computer.
That’s something you always do, so that should be possible I guess. Then afterwards, installing the
application. That’s easy to do with the installer. You don’t have to compile it. Then that would be
obviously very feasible as well (P1)

However, participants noted that the final version of EMBody focused more on curious audi-

ence and researchers who wanted to conduct EMG experiments. Here, participants discussed the

possibility of introducing different user modes within the application:

I think this is one of the disadvantages and one of the issues. It’s not optimized for the public (P2)

What I can imagine is that you have these abstractions layers for expert users that really want
to see the signal. They’re really interested in how this classification actually works, and you have
something, let’s say, novice mode where you don’t see that. (P2)

5.4.3 Transparency. Presenting users with the live signal and the respective gesture predictions al-

lowed users to "get a feel of what the signals looks like" (P4). This greatly increased the transparency

of the toolkit and its data processing pipeline:
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When you’re doing live prediction, it’s nice to have the signal in front of you and the prediction just
next to it, so you know if you’ve done something wrong. (P4)

I think you get a lot of transparency towards the user, whoever that may be. Could be a regular user,
could be a researcher. You see how the signal’s actually working, you see the signal, and so on (P2)

Furthermore, EMBody’s workflow was immediately recognized, closely following related proce-

dures for prototyping and experimenting with physiological signals:

I think we used the very same procedure. We first set up the prototype, so we connected electrodes,
then we– well, first, the gesture we wanted to use were defined beforehand but we still had to calibrate.
After the calibration, we trained the model and we started live classification to use a prototype. It’s
the same workflow. (P4)

Interviewees appreciated that all of EMBody’s source code and documentation is open-source,

ensuring transparency of the workflow and algorithms:

Yes. I think that’s very convenient to have. Also, it’s open-source. They can want to extend it I guess.
(P1)

(Talking about Myo armband) It was not open source. This is maybe a key difference between the
commercial product and your project. They did several gestures, but their accuracy was not very
well. It was not really clear how they classified it and so the product failed and the company is no
more (P2)

5.4.4 Challenges in Working with EMG. Participants further commented on the challenges they

experienced with EMG as a modality. First, electrode location was critical in achieving consistent

results and not always straightforward:

There it was like not really clear, "Where do I have to put these two electrodes and where do I have
to put the ground electrodes? What does this actually mean? Does this has an influence where I put
the ground electrode?" (P2)

Second, the lack of generalizability over multiple persons that is inherent in EMG was difficult

to address when prototyping with multiple users:

Overall, what worked very well is that when you put it approximately at the same place, it worked
very well again, but only if you put it on the same person. (P2)

Having access to six channels also meant dealing with a lot of cables for the electrodes. Intervie-

wees remarked that this could place a heavy burden on users.

I don’t know if you used all of these six channels, but it could be quite heavy on the participant. (P4)

6 DISCUSSION
From an initial set of requirements, we further refined and addressed challenges for EMG-based

prototyping and experimentation resulting in the final version of EMBody. Through various stages

of evaluations, we confirmed that EMBody meets the requirements. However, our work also

highlights ongoing challenging in EMG-based interaction.

6.1 Mobility and Data Acquisition
EMBody’s goal is to provide a mobile platform, allowing for easy data acquisition of muscle activity

via electromyograms. Throughout the workshops, we identified that the Bluetooth protocol used

in an early version was unreliable and intractable, especially when working in groups and with

multiple devices. Hence, the final version of EMBody relies on a WiFi connection using the UDP
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protocol. This constitutes a compromise between reliability, the necessary setup time and resources.

While relying on WiFi for connectivity meant the necessity of increased power (Section 3.3), we

found this to be negligible and could keep a small form factor. Our presented sample applications

make use of this new prototype, showcasing that mobile scenarios, such as fitness exercises, are

possible without obstructing the user.

An added benefit of switching to WiFi was the fact that we could realize a simple setup process

via a captive portal, allowing users to easily configure the device during first use, without the need

to flash the firmware of the microcontroller. Additionally, it simplified prototyping when working

with multiple receiver applications. We confirmed the feasibility of this data acquisition setup and

connectivity via WiFi in the presented sample applications.

Switching to a more powerful microcontroller also meant that we could increase the channel

count to a maximum of six channels. We found that the original version using one EMG shield
33
per

channel was very cumbersome to use when employing more than two channels. The final version

of EMBody natively supports up to six channels for data acquisition, thus enabling simultaneous ex-

ploration of electrode configurations. The live view of EMBody’s software application conveniently

allows for visual debugging of these configurations as confirmed by our sample applications and

interviews.

6.2 Abstraction Layers through Modular Structure
One major objective during EMBody’s development process was to make it accessible to a wide

range of user groups, including novices as well as experts in physiological sensing, but also tailoring

to different professions, such as designers, developers and engineers. We realized this objective

using a modular structure encapsulating EMBody’s data-centric processing pipeline (Section 3.4).

The software grants experts a high degree of control over how data is processed and interpreted.

Likewise, novices are aided by the exploration-centered workflow (Section 3.2), guiding them

throughout the creation process, while hiding technical complexities in EMBody’s base version.

Extensive documentation, including electrode setup and best practices is provided
34
. We first

informally verified this procedure during the workshops by guiding the students, confirming its

viability. We later successfully instantiated the workflow in our sample applications and confirmed

in the interviews that it was comprehensible and easy to follow. Moreover, the workflow closely

draws from standard workflows when working with physiological sensing. Hence, experts felt

immediately at home and quickly identified extensions points suitable for customization.

6.3 Towards More Accessible EMG Input for HCI
Our toolkit effectively lowers entry barriers for researchers and designers to begin exploring

EMG-based input. Our evaluation of EMBody highlighted several challenges for future EMG input

systems to further support developing interactive systems.

EMG measurements require placing electrodes on muscles and connecting electrode measure-

ments to measurement units. We observed that researchers using EMBody were eager to experiment

with multiple muscles and, consequently, measurement channels. This offers the opportunity of

sensing complex movements, effectively increasing the fidelity of the motions that an EMG system

can detect. However, a high number of channels results in a high number of cables to be connected,

which may be cumbersome. Thus, future EMG toolkits should include advanced cable management.

Despite cable-based solutions posing certain problems, cables are still the technology of choice for

33
https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/open-source-hardware
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Fig. 16. A speculative future usage scenario for EMBody. A cyclist monitors their quadriceps activity (using
electrodes, marked in blue) during a bike ride on their smartphone (yellow). We envision that EMBody will
foster experimentation with EMG.

HCI prototyping. While textile wearable electrodes are being researched, they are often muscle-

specific and may not support diverse users, e.g. [32]. Wireless electrodes would require individual

power source which would increase their mass.

Another finding from the evaluation of our toolkit is the fact that EMG measurements are highly

person-dependent. As a consequence, EMG systems require individual calibration and detection

is based on values specific to the user. EMBody includes calibration routines, but the need for

explicit calibration does increase the complexity of interacting with prototypes which use EMG

input. We envision that future EMG tools for HCI researchers should explore if implicit calibration

methods can be used. This could be achieved by integrating calibration in tasks. There is a need for

developing methods similar to ad-hoc calibration in eye tracking, e.g. [20].

Finally, developing and evaluating EMBody enabled us to observe how designing EMG input was

part of an interaction design process. One of the overarching ideas behind our toolkit was enabling

designers to focus on the nature of the interaction technique they were designing and emphasize the

limitations of the sensing modality. While we did observe that EMBody eliminated initial barriers

to using EMG, EMG input still produces additional constraints in the design process. Limiting input

to the muscles monitored or the need to place electrodes are likely to have a significant impact on

how a design team develops an interactive artefact which uses EMG. Future work should address

this challenge and study how designers can consider EMG as a input modality and be implicitly

aware of the EMG design space without investing time in extensive EMG prototyping.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduced EMBody—a data-centric toolkit for rapid prototyping and experi-

mentation with EMG. We provided details of the design of the toolkit and information on how

to access the open-source resources needed to build it. We also illustrated the utility of EMBody

by reporting on workshops with students, presenting two systems that make use of the toolkit

and a final evaluation through expert interviews. We concluded that the EMBody toolkit can help

practitioners focus on designing the interface and feedback, reducing the need to troubleshoot data

acquisition and interpretation. Additionally, experts appreciated its modular structure and data

processing pipeline, confirming that EMBody successfully tailored to the needs of a wider audience.
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In contrast to off-the-shelf products, EMBody provides a full exploration-centered workflow from

data acquisition through calibration andmodel training for live predictions. We envision that further

iterations of our toolkit can be driven by the community, enabling access to electromyography

for less technology-proficient practitioners, while allowing experts to benefit from improved

algorithms. This would enable end-users to experiment with EMG for understanding their own

bodies (see Figure 16 for an example scenario). In combination with recent advances in sensing

technologies [13, 30], we hope that our work can help establish EMG as a key modality for future

embodied interaction.
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